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V. CONCLUSION

The results of this paper yield a practical method
of determining the lattice corrections to thermodynamic
functions computed on the Thomas-Fermi model. No
attempt has been made to take account of the long-
range order which may be present in the amorphous
phase above the fusion temperature. Presumably, the
existence of such order must introduce corrections to
thermodynamic functions computed on the Thomas-
Fermi model, analogous to the lattice corrections.

Mott’s theory of liquids* may provide an approach
to such questions.
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A generalization of the Lindemann law given previously is used in conjunction with the Murnaghan
cquation of state for a solid to derive a law of reduced states for fusion, valid for the case of classical
excitation of the lattice vibrations at melting. If the bulk modulus and volume of the solid at fusion and
the melting temperature are reduced by dividing the quantity in question by its corresponding value at
the origin of the fusion curve, any reduced variable of this set can be expressed as a power of any other,
with an exponent involving a constant appearing in the Murnaghan equation. It is shown that the ratio
of the latent heat to the volume change of fusion obeys a similar law of reduced states, on the basis of an
assumed form of the volume dependence of the Griineisen parameter of the solid along the fusion curve.
The constant appearing in the Murnaghan equation of state is interpreted physically in terms of an average
Griineisen parameter of the solid. The law of reduced states yields an immediate derivation of the empirical
Simon equation for the fusion curve. For the alkali metals, it is shown that experimental values of the
temperature exponent in the Simon equation are quantitatively compatible with the theoretical evaluation
given, and, furthermore, that the theory can predict approximate values of the exponent, in practice.

f l ‘HE empirical equation!
log(Pm+A)=B logl»+C, (1)

where P,, and T, are the fusion pressure and absolute
temperature, respectively, and 4, B, and C are dispos-
able coefficients, has been proposed by Simon to
represent the fusion curve. By evaluating the constant
C at the triple point of temperature 7", (and negligible
pressure), he has put the equation in the form

Po=A[(TW/T)E—1] (2)

for elements of low melting point; this form will be
referred to as the Simon equation. If a reduced pressure
P’ and temperature 7'’ are defined by P./4 and
T./T., respectively, Eq. (2) yields the Simon law,

P, =T,'8~1, 3)

of corresponding states for fusion. This law is analogous
to the law of corresponding states for a van der Waals
gas, with the constant 4 and the triple-point tempera-
ture as reducing parameters corresponding to the
critical pressure and temperature, respectively.

* Work sponsored by the U. S. Atomic Energy Commission.

1F. Simon, Z. Electrochem. 35, 618 (1929); Trans. Faraday
Soc. 33, 65 (1937).

If the constants A4 and B are selected by trial,
Eq. (2) yields a good fit to the observed melting curves
of solids of low melting point. Values of the constants
for various elements, as derived from experimental
work prior to 1937, are tabulated (except for D.)* by
Ruhemann and Ruhemann.? Later work* has extended
the pressure range over which the equation is applicable.
The Simon exponent B is roughly 2 for most of the
substances (He, H,, Ne, N;) of low melting point,
except for A, for which it is somewhat over unity.
For the alkali metals, 7", in Eq. (2) must be replaced by
the normal melting temperature; reported values® of
the exponent B are approximately 4. Values quoted for
the Simon exponent by different authors frequently
are fairly discrepant for the same element. Part of the
variance is presumably due to the fact that a require-
ment merely of fit to the data does not necessarily

(1;3K5.) Clusius and E. Bartholomé, Z. physik. Chem. B30, 237

3 M. Ruhemann and B. Ruhemann, Low Temperature Physics
(Cambridge University Press, London, 1937), p. 97.

4 Holland, Huggill, Jones, and Simon, Nature 165, 147 (1950);
Holland, Huggill, and Jones, Proc. Roy. Soc. (London) A207,
268 (1951); J. S. Dugdale and F. E. Simon, Proc. Roy. Soc.
(London) A218, 291 (1953).

‘21"9.) Simon and G. Glatzel, Z. anorg. u. allgem. Chem. 178, 309

(19
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fix the parameters of a two-parameter curve uniquely,
although Simon®7 has indicated the use of the initial
slope of the fusion curve (or of Clapeyron’s equation)
to reduce Eq. (2) to a one-parameter curve.

Domb? has derived the Simon equation theoretically
from the order-disorder fusion theory of Lennard-Jones
and Devonshire,® for the range of moderately high
pressure where a Lennard-Jones intermolecular poten-
tial is a sufficient approximation. His expression for
the Simon exponent is B=1+3/n, where n (about 9
to 12) is the (negative) exponent of the repulsive term
in the potential. A derivation from the same model has
been given by de Boer'?; he obtains the constant value
1.25 for the Simon exponent. Both these evaluations
of the Simon exponent are somewhat too low to corre-
spond to reported values for the elements of low
melting point (except for argon), and they are definitely
too low to correspond to published values for the
alkali metals. Salter' has used the Lindemann law and
the Debye equation of state to obtain a fusion equation
identical in form with Simon’s equation, with the
exponent evaluated in terms of Griineisen’s constant
for the solid. He notes that use of normal values of
the Griineisen constant in his expression yields values
of the Simon exponent considerably below reported
values for the alkali metals, but in reasonable accord
for argon.

Recently, the author has given a generalized Linde-
mann law which may represent a basic criterion of
fusion, at least for isotropic monatomic solids.* The
generalization yields an experimentally verified relation
connecting the Griineisen constant of the solid at
melting with fusion parameters, and explains the
validity of an empirical relation of Kubaschewski.®
The theory yields the conclusion that the fusion curve
is determined by conjunction of the equation of state
of the solid with the generalized Lindemann law. In
this paper, it will be shown that, by selection of the
Murnaghan equation of state" for the solid, the theory
of I yields a fusion equation identical in form with
Simon’s equation and providing quantitative agreement
with experiment for the alkali metals. The discussion
presupposes that the normal vibrations of the solid at
melting are classically excited, so that the quantization
parameters Q. and O, of I are equal to unity and zero
respectively. This limitation excludes cases (such as
H,;, D, and He at low temperature) in which the
zero-point energy at fusion is relatively large.

8 F. E. Simon, in L. Farkas Memorial Volume (Research Council
of Israel, Jerusalen, 1952), p. 37.

7 F. Simon, Nature 172, ?46 (1953).

8 C. Domb, Phil. Mag. 42, 1316 (1951).

9 J. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc.
(London) A170, 464 (1939).

1 T, de Boer, Proc. Roy. Soc. (London) A215, 5 (1952).

u L, Salter, Phil. Mag. 45, 369 (1954).

127, J. Gilvarry, this issue [Phys. Rev. 102, 308 (1956)],
referred to hereafter as I.

18, Kubaschewski, Trans. Faraday Soc. 45, 931 (1949).

WF, D. Murnaghan, Finile Deformalion of an Elastic Solid
(John Wiley and Sons, Inc., New York, 1951), p. 70.
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I. LAW OF REDUCED STATES

The equation of state of the solid will be taken as
that derived by Murnaghan from his ‘“integrated
linear theory” of finite strain. If P is the pressure
corresponding to the volume V of the solid, this equation

of state is
P=(ko/n)[(Vo/V)1—1], @)

where g is the normal bulk modulus (incompressibility)
corresponding to the normal volume Vy, and 7 is a
constant. The bulk modulus « of the solid follows as

k=xo(Vo/ V)" (5)

By determining n empirically, Murnaghan has obtained
an excellent fit of Bridgman’s pressure-volume data on
Na, for pressures up to 100 kilobars. The value obtained
for n (and the corresponding ko) varies somewhat with
the pressure range selected for direct fit. The largest
relative deviations are found for the lowest pressures,
which corresponds to the fact that Eq. (4) represents an
approximation in the large (rather than an osculating
approximation at the origin).

The bulk modulus «,, of the solid at melting can be
regarded as a function only of the corresponding
volume V,, of the solid. Since the Murnaghan equation
specifies «, by Eq. (5), as a function only of the volume,
application of this equation of state to the solid along
the fusion curve is a legitimate approximation. Hence,
Eq. (5) yields

Km/Km, 0= (Vom, o/ V)", (6)

where &m0 and Vo are the values of «, and V,,
respectively, corresponding to the origin of the fusion
curve. In principle, the parameter » should be deter-
mined from the pressure-volume relationship for the
solid along the fusion curve; unfortunately, such data
are not usually available from experiment for the
elements of higher melting temperature (such as the
alkali metals). Physical validity can be claimed for use
of the Murnaghan equation of state for the solid at
fusion only if values of % inferred from fusion curves
are reasonably consonant with those obtained from
experimental equations of state.

The Lindemann law for the case of classical excitation
of the lattice vibrations at melting of a monatomic
solid can be written

RT =%V m, (7

where R is the gas constant, 7' is the absolute melting
temperature corresponding to the molar volume V,,
and Q, defined in I, is a function of Poisson’s ratio at
fusion and of the Lindemann constant. Under the
assumption of I that the fusion value of Poisson’s
ratio is a constant, use of Eq. (6) in Eq. (7) yields

T"./Tm, 0= (Vm. O/VM)V_I: (8)

where 7', o is the temperature corresponding to the
origin of the fusion curve. From this equation and
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Eq. (6), one obtains
km/km.0= (T'm/T'm0)% (9)

b=n/(n—1). (10)

Equations (6), (8), and (9) yield a law of reduced
states for fusion, in which the reducing parameter for
Kmy L'my OF Vo is the corresponding value at the origin
of the fusion curve; any reduced variable can be
expressed as a power of any other, with an exponent in
terms of the Murnaghan parameter ». The law is
referred to as one of reduced (rather than correspond-
ing) states in accordance with Simon’s nomenclature,®
since the reducing parameters are not constant as in
the law of corresponding states for a van der Waals
gas. The relations are consistent with the Lindemann
Jaw (7) in the form

Ty/Tm o= (km/km, 0) (Viu/ V m,0), (11)

which presupposes that the Poisson ratio of the solid
is constant along the fusion curve.

It is shown in I that the ratio of the latent heat L
to the volume change AV of fusion is given by

L/Av=q"m/2(7m_31{)) (12)

where v, is the value of the Griineisen parameter of
the solid at the point (Zm,Pn) of the fusion curve,
and ¢ is a parameter defined in I. The quantity ym—%
can be regarded as a function only of the volume V,,
of the solid at fusion. Its analytic dependence on V.,
will be taken as

Y=/ (Ym0=5) = (Vou/Vm,0)", (13)

where ym, o is the value of v, corresponding to the
origin of the fusion curve, and u is defined by

p=dIn(yn—23)/d InV, (14)

analogously to the definition of #,, in terms of the
fusion value of the Debye frequency. On the assumption
that u is constant, its value can be inferred from the
equation

dQTm/de2= —2(1+#) ('}'m_JS.)T'n/qz"m2 (15)

of I, as applied at the origin. The parameter ¢ is of the
order of unity, with the average value 1.2 over the
elements discussed in I; it can be presumed for purposes
of the present discussion that ¢ shows only small
variation over the fusion curve and can be assigned
the constant value go corresponding to the origin.
Under these assumptions, use of Egs. (6) and (13) in
Eq. (12) yields the law

(L/AV)/a= (Vo o/ Vm)TH*

of reduced states for L/AV, where the parameter a
is defined by ;

(17)

where

(16)

a=qokm,o/2(Ym0—3)-
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By Eq. (12), the parameter @ appearing as the reducing
parameter for L/AV is equal to the value of the latter
quantity at the origin. Bridgman has expressed
opposition to the idea of a law of corresponding states
for fusion,!® since L and AV separately do not exhibit
definite signs of such a law (except possibly for the
alkali metals)'®; note, however, that it is the ratio
L/AV which obeys the law (16) of reduced states.

By means of Eq. (8), one can write Eq. (13) as

(VM—%)/('YM. 0—%)= (Tm. O/Tm)ﬂ:

B=n/(n—1). (19)

Similarly, the law (16) of reduced states for L/AV can
be written

(18)
where

(L/AV)/G-: (Tm/Tm. O)B) (20)

B=b+B=(n+u)/(n—1), (21)

where b is defined by Eq. (10). It is clear that any
reduced variable corresponding to the set &m, Vmy Tm,
Ym—1%, and L/AV can be expressed as a power of any
other.

Equation (13) demands that the Griineisen parameter
¥ of the solid be a variable along the fusion curve.
The Murnaghan parameter 5 appearing in Eq. (6) can
be interpreted in terms of an average value v, a of the
Griineisen parameter v, over the fusion curve, by
means of the equation

Ym=—5—13d Ink,,/d InV ,, (22)

given in I. Application of this equation to Eq. (6)
corresponding to the Murnaghan equation yields

in which

(23)

Note that this identification in terms of an average
Griineisen constant yields a physical interpretation of
the Murnaghan parameter 7 (introduced as an empirical
constant in the integrated linear theory of finite strain)
which applies in general and not merely at fusion.

It has been emphasized that the Murnaghan equation
of state represents an approximation in the large for
the equation of state along the fusion curve. If the
Murnaghan parameter 5 is chosen by fitting the
pressure-volume curve over a small range of pressure
near the origin of the fusion curve, one must obtain

(24)

Ymnw=%n—%).

70=2Ym o3

for 5 in terms of the Griineisen parameter at the origin,
as follows from Eq. (22) or Eq. (23). In this case,
Egs. (6) and (8) can be written

Km=Km,0(V m, o/ V m)?1m 013,
Tm='Tm. O(Vm. O/Vm)z(”" 0—1/3))
15 P, W, Bridgman, Revs. Modern Phys. 7, 1 (1935).

16 P, W. Bridgman, The Physics of High Pressure (G. Bell and
Sons, Ltd., London, 1949), p. 211.

(25a)
(25b)
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respectively, and Eq. (9) becomes

Km=Km.0(Tm/Tm.0 b’, (26)

b= (6Ym o+ 1)/[2BVmo—1)]. @7

The three equations (25a) (25b), and (26) are valid
only as osculating approximations at the origin; by
means of Eq. (23), one can show that they differ only
in the substitution of v, o for yma from their cor-
respondents in the large, Egs. (6), (8), and (9),
respectively.

These osculating approximations are derivable
directly from the Griineisen postulate that the Debye
frequency, in general, is a power-law function only of
the volume; if », is the Debye frequency of the solid
at melting, this assumption yields the expression

Vm= G/Vm‘)‘m, o (28)

where G is a constant, for v,, in the neighborhood of the
origin of the fusion curve. The Debye frequency of a
monatomic solid at melting is given likewise by

Y= snNUSM~12, 27, 118, (29)

where M is the atomic weight, N is Avogadro’s number,
and s, is a function, defined in I, of the value of
Poisson’s ratio of the solid at melting. On the assump-
tion of I that the Poisson ratio at fusion is constant,
comparison of Eqs. (28) and (29) yields Eq. (25a).
Equation (25b) and thus Eq. (26) then follow directly
from Eq. (7), or from the identification v, =vz, where
vy, is the Lindemann frequency defined in 1.

where

II. SIMON EQUATION

The general result,
de/dTm’:qK'n/z('Ym_%)Tmy (30)

for the slope of the fusion curve has been obtained in I.
If ¢ is given the constant value ¢o corresponding to the
origin, integration of this equation with use of Egs.
(9) and (18) yields

Pop—Puy, o= (a/B)[(Tm/Tm. 0)f— 1], (31)

where P, o is the pressure corresponding to the origin
of the fusion curve, a is given by Eq. (17), and B is
defined by Eq. (21). Equation (31) has precisely the
form, with 4=a/B, of the Simon equation (2) (except
for the introduction of the constant P, ¢ of integration
to make both sides of the equation vanish together at
the origin). The equation assumes a reduced form,
analogous to Eq. (20) for L/AV, if the left-hand side
is rewritten as (Pn— Pm,0)/a. '
Equation (31) of the fusion curve yields the correct
initial slope demanded by Eq. (30), and the correct
initial value @ of the ratio L/AV required by Eq. (12);
thus Clapeyron’s equation is satisfied at the origin,
independently of the value of the Simon exponent B.
As has been pointed out, the parameter u of Eq. (14),
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which corresponds to the volume variation of v,,—}
and enters B through g of Eq. (19), can be evaluated
by application at the origin of Eq. (13) ford*T,./dP.2
In this case, it follows that Eq. (31) yields the correct
curvature of the fusion curve at the origin corresponding
to Eq. (15); note, however, that this equation has been
derived in I on the assumption that ¢ is constant.

The derivation of Simon’s equation given by Salter,!t
based on the Debye equation of state, assumes that
the Griineisen parameter has a constant value. His
result is essentially

Pm— Pm_ n=A[(Tm/Tm, O)b,_ 1]) (32)

where A is specified only as a constant and &’ is defined
by Eq. (27). Since the exponent & of Eq. (10) can be
written in terms of the average Griineisen parameter
of Eq. (23) as

b= (67m. Av+ 1)/{:2 (‘Ym, N 1):]: (33)

it follows that Salter’s evaluation of the Simon exponent
corresponds to substituting ymo for ¥ma in & and
taking =0 (corresponding to u=0) in Egs. (21) for B.

Equation (30) for dP,/dT. is susceptible to a
physical interpretation. If one writes the parameter g,
in a form deducible from results of I, as

7= (1= kmamdT m/dPy)7, (34)

in which a, is the coefficient of volume expansion of
the solid at fusion, substitution of this expression into
Eq. (30) yields

AP /AT m=km/2(Ym—3) T m+ KmQm. (35)

The second term on the right-hand side of this equation
is given by Griineisen’s law as

kmOm=YmCV, m/Vm=[(OP/OT)v ]m, (36)

where Cy, . is the heat capacity of the solid at fusion,
and the subscript # on the last term designates evalua-
tion of the partial derivative for the solid on the fusion
curve. Hence, the second term in Eq. (35) for d2P,,/dTn
corresponds to the increment in thermal pressure of
the lattice as T, is increased. Thus, the assumption
g=qo made in deriving Egs. (20) and (31) corresponds
to the postulate that [(0P/dT)v]n bear a constant
ratio to the total derivative dP,,/dT ,, along the melting
curve. From the fact that

AP /AT w=[(OP/3V)1]ndV w/dT
+[(0P/0T)v]m (37)

it follows that
[(aP/aV)T]dem/dTm=Km/z(‘ym_ %)Tm' (38)

Hence, the first term in Eq. (335) for dP,/dT,. corre-
sponds to the increment, as 7T, and thus V', is changed,
of that part of the pressure which depends directly on
the volume, that is, the pressure corresponding (for
low or moderate compression) to the potential energy of
an atom in the interatomic force field. Salter’s derivation
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of the Simon equation assumes that this term is
constant; thus he obtains the correct form of the
exponent &’ of Eq. (27) in terms of ym o but fails to
obtain the analog of the expression a/B corresponding
to the Simon coefficient.

Simon! has shown that the coefficient 4 of Eq. (2)
is of the order of the internal pressure of the solid.
Approximate numerical consistency of this result with
the evaluation of the Simon coeflicient given here can
be shown by means of Griineisen’s law and an expres-
sion” for the internal pressure from the Griineisen
theory of solids.

III. COMPARISON WITH EXPERIMENT

In this section, the preceding theory will be compared
with Bridgman’s experimental results!” on the fusion

4
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o K [¢)
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Frc. 1. Comparison of the law of reduced states (straight line)
for the ratio L/AV in terms of the fusion temperature, against
Bridgman’s experimental data for four alkali metals. Values of
the Simon exponent B (tabulated in the fourth column of Table I)
selected in each case for best over-all fit to the data.

curves of the alkali metals Cs, Rb, K, and Na, extending
over pressure ranges up to 12 kilobars; the element Li
will be ignored, since Bridgman’s measurements were
made on a somewhat impure sample.!®* To make a
comparison of Eq. (20) and of Eq. (31) with the data,
values of k. o entering the reducing parameter ¢ are
available from Table I of I. Values of v, o from Eq. (12),
and of g from Eq. (31) of I, are shown in Table I, as
evaluated to correspond to Bridgman’s experimental
values of L and AV at the normal melting point; the
values of v, ¢ given for the alkali metals in Table V of
I correspond to data for L and AV from other sources.
The third entry of Table I is the parameter a of Eq. (17).

Equation (20) states that the ordinate (L/AV)/a,
when plotted against (T'm/T'm,0)%, should yield a

17 P, W. Bridgman, Phys. Rev. 3, 153 (1914); 27, 68 (1926).
18 P, W, Bridgman, Proc. Am. Acad. Arts. Sci. 56, 59 (1921).
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Fi16. 2. Comparison of the Simon equation (straight line), with
values of B tabulated in the fourth column of Table I, against
Bridgman’s experimental data for four alkali metals.

straight line of inclination 45°. In Fig. 1, this ordinate
from Bridgman’s experimental values of L and AV and
values of @ from Table I is shown as a function of
(Ts/Tm0)® for the alkali metals, where the Simon
exponent B has been selected by trial in each case to
yield the best over-all fit to the data. For the same
value of B in each case, the values of (P,,— P, 0)/a
corresponding to Bridgman’s pressure-temperature
data at fusion are shown in Fig. 2 as a function of
B [(Tw/Tmo)®—1]; the data yield closely the
straight line of inclination 45° demanded by Eq. (31).
The maximum error indicated at the highest ordinate
on I'ig. 2 for any element does not exceed 3%, which
may be within the experimental error. The values
of the Simon exponent B obtained for each element are
shown in Table I, with values, for comparison, as
determined by others from essentially the sime data.
The disparities are explainable on two counts: the
election in this paper to obtain the Simon exponent by
a best fit corresponding to Eq. (20), rather than to the
Simon equation (31) directly, and the requirement of
this theory that the Simon coefficient 4 be a/B, with a
given by Eq. (17), which insures that Clapeyron’s
equation is satisfied at the origin of the fusion curve.
The question at issue is to show that the values of
the Simon exponent obtained are compatible with the
theory given. Since experimental data on the volumes
of the alkali metals along the fusion curve are not
available, the values of the Murnaghan parameter 7,

TasBLE I. Parameters of the Simon equation.

10~%a B
Ym0 Qo bars Eq. (20) B
Cs 1.34 1.18 0.0119 4.50 4.758
Rb 1.64 1.22 0.0146 3.70 4.2
K 1.20 1.15 0.0202 4.21 4.53
Na 1,13 1.13 0.0454 3.15 3.56

» Value for Cs from Simon and Glatzel (reference §); values for Rb, K,
Na from J. A. W. Huggill, as quoted by Salter (reference 11).




330 g J

TasLE II. Parameters of fusion curves.

Ea.(15) Ea.(21) 7 Ear ) BaTOY) Eq. W0y £ (1)

Cs 3.5 2.3 e 1.0 1.1, 2.6 3.8
Rb 4.7 3.1 cee 1.4 14, 3.2 3.6
K 25 2.2 cee 0.9 0.9 23 3.5
Na (25) (2.7) 3.79® (.1.;) (1.0) (2.;) (3.;)

(50-60

kilobars)

2.86
(90-100
kilobars)

» Values at the origin of d?Tw/dPm? in Eq. (15) were computed from
second differences of Tm 95 Pm from Bridgman's data (reference 17). It
was necessary to smooth the values of A?T ' near the origin for K. For Na,
the values of A*T'w were too erratic to permit smoothing, and the value at
the origin was taken as the average of values corresponding to the first
four intervals of Pm.

b See reference 14. Parenthetic pressure ranges correspond to direct fit.

which enters B, must be obtained indirectly. Values of
the parameter u corresponding to the volume variation
of ¥»—7% are shown in Table II, as determined by Eq.
(15) from quantities evaluated at the origin; values of
&*T ,/dP,* were computed by numerical differentiation
of the fusion temperature with respect to pressure. As
noted, the value for Na is somewhat doubtful, as is
that for K to a less extent. These values of u and the
values of the fourth column of Table I for B yield the
tabulated values of 5 in the second column of Table II,
from Egs. (21). It is seen that the values of 5 are
reasonably concordant with the listed values obtained
by Murnaghan from direct fit, over ten-kilobar intervals
of pressure, of the pressure-volume curve for Na at
normal temperature.

A severer test of the assumptions underlying the
theory can be obtained by noting that the average value
¥ m, & Of the Griineisen parameter along the fusion curve,
defined by Eq. (23) in terms of 5, should be approxi-
mately equal to the average value defined implicitly by
Eq. (18) for the variation of v,,— % with fusion tempera-
ture. The latter average is given by

’Ym.Av—%z 1—- (Tm. O/Tm.mux A1 : (39)
Y m, 0_% (ﬁ_l)(Tm.mu/T'n.O" 1)

where T, max is the maximum temperature on an
observed fusion curve. It is seen that agreement is
reasonable for tabulated values of yma in Table II,
as obtained by means of Eq. (23) from the values of
7 in the second column, and as obtained by means of
Eq. (39) from the values of x4 and 7 in the first and
second columns, respectively. One should not expect
identity necessarily, since the two evaluations of
Yma correspond to different methods of averaging.
Finally, one notes that dy./dT,. is negative, from
Eq. (18); the sign of the derivative agrees with the
relation v a<7¥mo Wwhich holds for the values of
¥ m,a in Table IT except for one instance in the doubtful
case of Na.

The approximate equality of these two evaluations
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of ¥m, a yields a method of inferring the value of 7 from
knowledge of the values of 7ym,¢ and u. If Eq. (39) is
rewritten, by means of Egs. (23) and (24), as

1"’ (Tm, O/Tm. mux)B—1
- ) (40)
(B_ 1) (Tm. mnx/Tm, o= 1)

the definition 8=u/(n—1) permits one to solve the
equation for by trial, if 7o and u are known. Values of
n obtained in this manner, with use of values of v, ¢ and
u from Tables I and II, respectively, are shown in the
sixth column of Table IT; the agreement with the values
of the second column is satisfactory. Values of B from
Eq. (21) corresponding to values of u and 7 from the
first and sixth columns, respectively, are tabulated in
the last column of Table II; the agreement with the
values of the fourth column of Table I is good for Rb
and K, but the differences in the cases of Cs and Na
reflect the sensitivity of B= (y+u)/(n—1) to the value
of »—1 in the denominator. Thus, the theory given is
able to predict an approximate value of the Simon
exponent for the alkali metals; by way of contrast
with the values of the last column of Table II, note that
Salter’s evaluation (27) of the Simon exponent yields
numbers of the order of 1.5.

By use of a Taylor expansion of Eq. (18) to obtain
an evaluation of v a, one finds the explicit expression

1~ 3 {not 14 (0= 1)* = 4 (Tm, max/ T'm,0— 1) J#},  (41)

valid as an approximation provided T, max/Tm, o0 is
sufficiently small. This equation yields values of 7
differing from those corresponding to Eq. (40) by about
6% on the average for Cs, Rb, and Na; it fails for
K, where the large value of T, max/Tmo—1 (in this
case about }) makes the radical imaginary.

On the assumption that the heat capacity of the
solid at fusion has the Dulong and Petit value, Egs.
(36) and (34) of I yield the approximation

in which @ is the parameter appearing in Eq. (7). Use
of Eq. (18) in this expression for ¢ with values of u
and 5 from Table II, permits one to evaluate the
minimum value ¢mina 0of ¢ corresponding to the tempera-
ture Tm max ON a fusion curve. The relative difference
(g0—qwmin)/qo is largest for the elements K and Cs
showing the largest ordinates in Fig. 2, in which
cases it amounts to about 10%,. Since this value
probably exceeds the experimental error in the fusion
data, Eqgs. (20) and (31) are valid only as first-order
approximations; a more refined analysis should take
the variation of ¢ into account.

n—1

n0—1

IV. CONCLUSION

The successful comparison of theory with experiment
for the alkali metals permits one to assess tentatively
the significance of the Simon equation for elements of
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relatively high melting point. For elements of low
melting point, such as the molecular crystals, applicabil-
ity of the Murnaghan equation of state has not been
verified; hence the conclusions are not necessarily
valid for elements of this class, for which the Simon
equation was originally devised.

The fundamental fusion criterion on this theory is
Eq. (7) corresponding to the Lindemann law, from
which the Simon equation follows through choice of
the Murnaghan equation (or one of similar analytic
form) as the equation of state of the solid. However, a
trecatment analogous to that given here, based on a
Birch equation'® (also derived from the theory of finite
strain) or other justifiable equation of state, will not
necessarily yield the analytic form of Eq. (31), but
should be capable of representing the experimental
facts as well, if Eq. (7) is accepted. Further, the
evaluation (21) of the Simon exponent implies some
dependence on the pressure range covered by the fusion

¥ F. Birch, Phys. Rev. 71, 809 (1947).
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curve, and the evaluation of the Simon coefficient shows
a dependence on the arbitrary position of the origin
of the fusion curve. These considerations suggest that
the Simon equation has more the character of an
interpolation formula than a basic fusion equation, at
least for the elements of higher melting temperature.

The fact that the Simon equation can be derived so
directly from the generalized Lindemann law of I, for
low pressure, justifies to some extent the step of
extrapolating the law, for high pressure, to obtain the
fusion curve on the basis of the Thomas-IF'ermi equation
of state.®
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An evaluation of the Griinesisen parameter (or constant) from the equation of state of a solid has been
obtained by Druyvesteyn and Meyering on the basis of the theory of finite strain. The result differs (by —3)
from the corresponding evaluation on the Debye theory, as given by Lorentz and by Slater. The value of
Druyvesteyn and Meyering is derived here without use of the formal theory of finite strain, and shown to
correspond physically to a model of independent pairs of nearest neighbor atoms, rather than to the Debye

. model of coupled atomic vibrations. This fact resolves a paradox raised by Dugdale and MacDonald in
connection with an ideal harmonic solid, and ascribed by them to neglect of finite strain. The presence of a
state of finite hydrostatic pressure, upon which elastic waves or pressure changes of infinitesimal amplitude
are impressed, is taken into account explicitly by means of Murnaghan’s theory of finite strain, tozobtain
the Griineisen parameter, as evaluated from the equation of state, on the Debye model and for a
Druyvesteyn-Meyering solid. The results are identical in the two cases with the corrésponding values
obtained without use of the formal theory of finite strain. Hence, no basis exists for the modification at
finite pressure in the Griineisen parameter from the Debye theory, as proposed by Dugdale and MacDonald.
A comparison of average values over a relatively large number of elements, of Griineisen constants as
evaluated from Griineisen’s law and from the equation of state on the Debye model, shows excellent

agreement at normal and at melting temperature.

I. INTRODUCTION

ROM results of Lorentz! and Slater,?? the Griineisen
parameter (or constant) vyp of an isotropic solid
can be evaluated from its equation of state as

vo=—3§—3(0P/aV)(V&*P/oV?), ¢Y)

where P is the pressure corresponding to the volume
V. As indicated by the subscript D, this result is based

* Work sponsored by the U. S. Atomic Energy Commission.

1H. A. Lorentz, Proc. Roy. Acad. Amsterdam 19, 1324 (1916).

2 J, C. Slater, Phys. Rev. 57, 744 (1940).

3 J. C. Slater, Iniroduction to Chemical Physics (McGraw-Hill
Book Company, Inc., New York, 1939), pp. 238, 3%4, 451.

on the Debye theory; it presupposes that the Poisson
ratio of the solid is constant. In a number of papers**
concerned with the fusion curve and the behavior of
solids under pressure, the author has assumed that the
evaluation (1) of the Griineisen parameter is valid at
high pressure, for the Debye theory.

The question can be raised whether the theory of

4J. J. Gilvarry, this issue [Phys. Rev. 102, 308 (1956)],
referred to hereafter as I.

8J. J. Gilvarry, this issue [Phys. Rev. 102, 317 (1956)],
referred to hereafter as II.

§ J. J. Gilvarry, preceding paper [Phys. Rev. 102, 325 (1956)],
referred to hereafter as III.
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finite strain may not modify Eq. (1) at high pressure.
On the basis of Duhem’s formulation? of the theory of
finite strain, Druyvesteyn and Meyering® have obtained
a value ypyr for the Griineisen parameter of a solid as
evaluated from the equation of state, which can be
expressed as

YDM=YD—3, (2)

in terms of yp of Eq. (1). The presumption in their
work is that the conflict of Eq. (2) with Eq. (1) arises
from consideration of finite strain. Further, Druyves-
teyn® has used Murhaghan’s theory'®! of finite strain,
with some drastic assumptions, to evaluate the Griinei-
sen parameter of a solid in terms of its Poisson ratio
alone. In later work,” however, he pointed out that
values of the Griincisen constant obtained from
Griincisen’s law show only poorly the predicted
correlation with Poisson ratio; hence, this result of
Druyvesteyn will not be considered further in what
follows.

Of late, this question of the possible effect of finite
strain has been reopened by Dugdale and MacDonald.?
These authors point out that Eq. (1) yields a value
vp=% when applied to the equation of state of a solid
which they believe should show no thermal expansion;
since yp does not vanish, Griineisen’s law implies a
thermal expansion. Dugdale and MacDonald ascribe
the paradox to neglect of finite strain in the derivation
of Eq. (1). They attempt to resolve the paradox by
postulating (apparently without formal derivation from
the theory of finite strain) an expression for the Griinei-
senparameter as evaluated from the equation of state,
which coincides with Eq. (2) of Druyvesteyn and
Meyering at zero pressure, and thus yields a vanishing
Griineisen parameter for the case in question.

The infinitesimal theory of elasticity describes an
isotropic solid by means of two elastic parameters,
which can be taken as the two Lamé constants or as the
bulk modulus and the Poisson ratio. These coefficients

yield directly the values of such derivatives as d2/9V

or 0°E/dV?, where E is the total energy. To evaluate
the corresponding higher derivatives, the formal theory
of finite strain introduces three additional coefficients
for an isotropic solid, which can be taken as the three
Brillouin'*!® or the three Murnaghan'® parameters.
These parameters yield directly the values of such
derivatives as 0*P/dV* or 0*E/9V?. Since Eq. (1)
contains 9*P/dV? though not expressed in terms of

7 P. Duhem, Ann. Ecole Norm. 23, 169 (1906).

8 M. J. Druyvesteyn and J. L. Meyering, Physica 8, 851 (1941).

® M. J. Druyvesteyn, Physica 8, 862 (1941).

0 F, D. Murnaghan, Am. J. Math. 59, 235 (1937).

UF, D. Murnaghan, in Appliecd Mechanics, Theodore von
Kdrman Anniversary Volume (California Institute of Technology,
Pasadena, 1941), p. 121.

12 M, J. Druyvesteyn, Philips Research Rept. 1, 77 (1946).

( 13 7, S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89, 832
1953).

WL, Brillouin, Ann. phys. 3, 267, 328 (1925).

%1, Brillouin, Les Tenseurs en Mécanique et en Elasticité
(Masson et Cie., Paris, 1949), Chaps. 10-12.
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Brillouin or Murnaghan parameters, it involves
consideration of finite strain. iience, Eq. (1) for the
Griineisen parameter on the Debye model should
contain no restriction to infinitesimal strain (a point
which has also been made by Slater'®).

In this paper, Eq. (2) for ypar will be derived without
recourse to the formal mechanics of the theory of finite
strain. The derivation brings out clearly the area of
physical validity of the result; it applies to a model of
independent pairs of nearest neighbor atoms. Druyves-
teyn and Meyering obtained the expression by virtue
only of tacit limitation to such a solid. Hence, the
difference between Eqs. (1) and (2) lies in the model
employed. The former ecquation corresponds to a
Debye solid, in which coupling of the vibrations of the
individual atoms is taken into account. These considera-
tions yield an immediate resolution of the paradox of
Dugdale and MacDonald.

Murnaghan has reduced the theory of finite strain
to a form very tractable for physical applications.'”
The consistency of his results with the very extensive
earlier work has been shown by Truesdell.! The
formalisma of the Murnaghan theory will be used in
this paper to derive the value of the Griineisen
parameter under finite strain, as evaluated from the
equation of state for a Debye solid, on the basis of an
assumption corresponding to that of constant Poisson
ratio. The result is identical with that of Eq. (1), as
one should expect on the usual assumption that the
presence of a uniform finite pressure affects the velocities
of elastic waves of infinitesimal amplitude only through
its effect upon the density and the elastic parameters.
In point of fact,.this assumption has been justified by
Biot! on his formulation of the theory of finite strain,
by a general argument. The value of Eq. (2) is found
for the Griineisen parameter of a Druyvesteyn-Meyer-
ing solid under finite strain.

II. HARMONIC SOLIDS

A harmonic solid is one in which the thermal behavior
can be represented by a set of lattice oscillators whose
Hamiltonian A is

H=33:(p2+4x"v2qd), 3)

where the range of 7 corresponds to all normal modes of
oscillation, ; is the generalized momentum correspond-
ing to the oscillator coordinate ¢;, and »; is an oscillator
frequency. The Griineisen parameter v of the solid is
defined by

v=—4 lnv;/d InV, 4)
on the Griineisen postulate that all lattice frequencies

16 7, C. Slater (private communication).

17 F. D. Murnaghan, Finite Dcformation of an Elastic Solid
(John Wiley and Sons, Inc., New York, 1951), Chap. 4.

18 C, Truesdell, J. Rational Mech. and Anal. 1, 173 (1952).

¥ M. A. Biot, J. Appl. Phys. 11, 522 (1940).
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y; vary with volume in the same manner.?® The thermal
pressure P; of the lattice is given by

Pi=yE/V, )
where the thermal energy £; of the lattice is defined by
Ei= (L 5pEnt (22O ny (6)

in which the averages of the kinetic and potential
energies which appear must be computed from quantum
~ statistical mechanics. The volumetric coefficient « of
thermal expansion for a harmonic solid can be found
from Griineisen’s law

Ka= ‘YCV/V’ (7)

in which K is the bulk modulus (inverse compressibility)
and Cy is the heat capacity at constant volume. This
result follows directly from Eq. (5), on the Griineisen
assumption that v is a function only of volume.

The thermal oscillators, whose coordinates appear
in Eq. (3) for H, may be the virtual oscillators of the
acoustic field as in a Debye solid (which shows a
spectrum of frequencies), or they may be material
oscillators, as in the Druyvesteyn-Meyering solid
(where only one frequency appears) discussed below.
Such harmonic solids stand in contrast to the an-
harmonic solids treated by Born and Brody,* or by
Hooton.”

A. Debye Solid

For purposes of later reference, a prefatory discussion
of a Debye solid will be given.

The Debye frequency vp of an isotropic monatomic
solid is defined by

3N=(4/3)wV (c:*+2c3)vpd, (8)

where &V is Avogadro’s number, V is the atomic volume,
and ¢; and ¢, are the velocities of longitudinal and
transverse elastic waves, respectively; this definition
corresponds to the Debye assumption of an average
wave velocity for the two types of waves. The wave
velocities are given for an isotropic solid by

o= (\+2u)/p, ci=u/p, ©
if p is the density and X and u are the Lamé parameters.
The definition of the bulk modulus by
=—VaP/oV (10)
yields the result

K=Nt3u (11)
on the infinitesimal theory of elasticity. Use of this

relation and the definition,
=1/ (\w), (12)

2 E. Griineisen, in Handbuch der Physik (Verlag Julius Springer»
Berlin, 1926), pp. 1-59.

2 M. Born and E. Brody, Z. Physik 6, 132 (1921).

2D. J. Hooton, Phil. Mag. 46, 422, 433 (1955).

-

of Poisson’s ratio ¢ permits one to write Eq. (8), in
the form of I and II, as

vp=spNYBMUZKI2YS, (13)
where M is the atomic weight and sp (o) -is defined by
3 i 9/4m i
AN [ o
2(1+0) J L[2(1—0) T+ 2[1—-20 ]

Thermodynamic functions on the Debye model, such
as the thermal energy E; of Eq. (6), are given directly
by standard results® in terms of hvp/kT, where A
and % are the Planck and Boltzmann constants respec-
tively, and T is the absolute temperature.

To satisfy Griineisen’s postulate,® that all the
frequencies vary with volume in the same manner, it is
essential that the Poisson ratio ¢ be constant ; otherwise
the frequencies of the longitudinal and transverse
waves show different variations.®? With this assumption,
use of Eq. (13) in Eq. (4) yields

yp=—1t—%01InK/d InV (15)

for the Griineisen parameter yp on the Debye model.
This form for vp is essentially that of Lorentz; by Eq.
(10), it is equivalent to Eq. (1) of Slater, which, one
notes, does not contain explicitly the Lamé parameters
N and u characteristic of the infinitesimal theory of
elasticity.

It is common in the theory of elasticity of solids to
consider only adiabatic and isothermal processes, in
which cases a strain-energy function can be defined®;
thus, the distinction between the energy and the
Helmholtz free energy will be ignored, in general.
It is known that the bulk modulus for a solid can be
taken indifferently as adiabatic or isothermal at low
pressure,*® and the result for a solid at high pressure
follows from the Thomas-Fermi atomic model, for
temperatures low in the sense of the model.?® Hence,
qualification of a partial derivative with respect to
volume as adiabatic or isothermal will be omitted, on
the basis above, and on the basis of Griineisen’s
assumption that the characteristic frequency is a
function only of volume.

B. Druyvesteyn-Meyering Solid

In this section, the Griineisen parameter given by
Druyvesteyn and Meyering will be obtained from an
atomistic model. Consider a monatomic solid with a
simple cubic lattice. Assume that cach atom shares a
bond with each of its six nearest neighbors, and with
no neighbors more remote. Let each bond be represented

3 J, E. Mayer and M. G. Mayer, Statistical Mechanics (John
Wiley and Sons, Inc., New York, 1940), pp. 243, 231.

#A. E. H. Love, A Treatise on the Malthematical Theory of
Elasticily (Dover Publications, New York, 1944), fourth edition,
Pp. 94, 99, 104.

% H. Jeffreys, Proc. Cambridge Phil. Soc. 26, 101 (1930).

26 ], J. Gilvarry, Phys. Rev. 96, 934 (1954).




334 J. J. GILVARRY

by an nscillator consisting of the two atoms connected
by a noiiinear spring along their join, and assume that
each such oscillator is independent. The Griineisen
parameter for such a solid of independent pairs of
nearest-neighbor atoms will be obtained by extension of
a method given by Madelung?” and Einstein®® to
evaluate the characteristic frequency of a solid in terms
of its elastic parameters. The model in question is
equivalent to one in which each bond is replaced by a
diatomic molecule. It is clearly artificial, but not
entirely so; Slater® has pointed out the similarity
between the metallic bond and the homopolar bond,
and has used the Morse potential for the interatomic
potential in a metal to obtain values of the Griineisen
constant showing reasonable agreement with values
from Griineisen’s law.

The volume variation of the frequency » of a single
bond oscillator is given to first order, from Eq. (4), by

v=vpu[1—=vou(V—V0)/Vo], (16)

where vpar is the corresponding Griineisen parameter,
vpar is a constant frequency, and V is the normal value
of the volume V. Since the volume per atom for a
simple cubic lattice is #* in terms of the interatomic
distance 7, one obtains

v=wpu[1—3vpu(r— r 0)/70, 17

if 7o is the normal value of 7; note that the nonlinear
spring forming a bond is such that increase of its length
7 lowers its force constant. The independent oscillation
corresponding to a bond takes place with the center of
mass of the two atoms fixed. Using reduced coordinates,
one can express the total potential energy # of this
oscillator of variable frequency (and force constant) as

'ft= ﬂzfilVDMz(f—fo)z[l—2705{(7—1’0)/7‘0], (18)

if 7 is the mass of an atom.

The change E—E, in the total energy of a solid on
compression can be expressed as a Taylor series through
third-order terms in the volume change as

1 K,
E—Eo='— —(V— Vo)’
2V,

ir 79 InK V=V,
<l G) ) o0
3 d 1nV 0 Vo
by means of Eq. (10), if E,, Ko, and the partial deriva-
tive represent values corresponding to the normal
volume V. For the model of a solid in question, the
work of compression can be viewed as expended

against the potential energy of the independent bond
oscillators. For N atoms in volume ¥, one obtains

E—Ey=3Nu, (20)

7 E, Madelung, Physik. Z. 11, 898 (1910).
28 A, Einstein, Ann. Physik 34, 170, 590 (1911).

if % is the energy of a single oscillator (since a unit cell
of a simple cubic lattice corresponds to one atom and
has twelve edges, each of which is common to four
unit cells). Taylor expansion of V'=N7* yields

3 dInK\ w—ro
1¢=—K°v09(r—ro)2{1+[1+( ) J } (21)
) d1lnV /ol 7o

from Egs. (19) and (20), if v, is the normal volume per
atom corresponding to the normal value 7, of 7.

Comparison of the leading terms of Eqs. (18) and
(21) for u yields the form

vpar=Spam V2K g/ 2pgl/8, (22)

with spar=312/2Vx, for the characteristic frequency of
a solid of independent pairs of nearest neighbor
atoms. In his evaluation of the characteristic frequency
of a solid from elastic parameters, Einstein obtained
the somewhat. different value (w/6)Y3(3Y%/2"%r) for
the coefficient corresponding to spa, by taking into
account the presence of 26 neighbors of each atom ina
simple cubic lattice. If NV is Avogadro’s number and
Vo the normal atomic volume, Eq. (22) yields

vpur=SpuNBMRK M2V (M6, (23)

which corresponds to Eq. (13) for the Debye fre-
quency.?®

A corresponding comparison of the second terms of
Eqgs. (18) and (21) for  yields

you=—3%[1+ (9 InK/a InV),] ‘ (24)

for the Griineisen parameter of a solid of independent
pairs of nearest-neighbor atoms. This expression
differs from vp of Eq. (15) by —%; it is identical with
the result of Druyvesteyn and Meyering, and agrees
with the result of Dugdale and MacDonald for zero
pressure. Note that no use of the formal theory of
finite strain has been made in the derivation.

On the assumption of independent bond oscillations,
the thermal expansion of the lattice can be determined
directly in the classical limit by means of the expression

L] -1 0
(r—ro)u=[ f e"‘”‘de] f xe kT dx,  (25)

—0 )

where x=r—r,. From Eq. (18) or Eq. (21), one obtains
Griineisen’s law in the form

Koa=7D151(3k)/vo, (26)

as a check on the results. Equation (25) yields a non-
vanishing thermal expansion from # of Eq. (18) or
Eq. (21) only because of existence of the anharmonic
terms, corresponding to which one obtains the ex-

® If the value of spsr noted above is equated to sp of Eq. (14),
one obtains ¢=0.36 as the equivalent Poisson ratio, which may
be compared with the average value 4 over the metals [C. Zwikker,

Physical Properties of Solid Malerials (Interscience Publishers,
Inc., New York, 1954), p. 90].
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pression
(0%16/0r%) o= — 54y paKo, (27)

obtained by Druyvesteyn and Meyering from prior
work of Ornstein and Zernike.®®
For a solid with a simple cubic lattice, in which the
potential energy U of an atom in the interatomic
force field is given, in terms of the interatomic distance
r, by
U=—A/r"+B/r, (28)

where m and » are constants, and 4 and B are lattice
sums which are computed for pairwise interaction of
the atom with all others (considered fixed), and which
are constant for deformation without distortion,
Griineisen® determined the characteristic frequency
directly to obtain the expression

(m+-n+3)/6="pxu (29)

for the Griineisen constant at normal volume. The
cquation of state corresponding to the potential
energy (28) can be evaluated as

P=3Ko(n—m) " \[(Vo/ V)3 — (Vo/V)mB+T] (30)

where Ky is the bulk modulus corresponding to the
normal volume V. If the bulk modulus K is determined
from this equation, onc verifies that Eq. (24) for ypy
reproduces correctly Griineisen’s value of Eq. (29)
for the parameter at normal volume. Slater® has given
the value (#+46)/6 for the Griineisen constant at
normal volume of a solid for which m=1 in Eq. (28);
the difference from the value (n+4)/6 corresponding
to Eq. (29) of Griineisen is due to the fact that Slater
based his result on Eq. (15) for the Debye model.

A solid of the type of Druyvesteyn and Meyering
shows thermal vibrations corresponding to the single
frequency given by Eq. (17). Hence, thermodynamic
functions, such as the thermal energy E; of Eq. (6),
can be expressed in terms of Avpy/kT by making use
of results from Einstein’s theory® of the heat capacity
of solids. The properties discussed above, depending on
the cubic term in the interatomic potential energy, are
consistent with the usual thermodynamic functions
derived directly from the partition function Q=3.
Xexp[— (n+%)hvpa/kT], since the energy levels of
an anharmonic oscillator are independent of the cubic
term within first-order perturbation theory.

Lattices more general than the simple cubic can be
treated by following Slater’s procedure,® used in his
heuristic representation of the metallic bond by a
diatomic molecule, of writing the volume per atom as
¢ in terms of the interatomic distance r of nearest-
neighbor atoms, where the constant ¢ is characteristic
of the lattice type. In such a case, Eq. (20) remains

# L. S. Ornstein and F. Zernike, Proc. Roy. Acad. Amsterdam
19, 1289, 1304 (1916).

4 L. Pauling and E. B. Wilson, Introduction to Quantum Mechan-
ics (McGraw-Hill Book Company, Inc., New York, 1935),

p- 160,

valid, since each oscillator introduces a generalized
coordinate g;=r—7y to describe the solid, which has
3N degrees of freedom. Taylor expansion of V=Nc¢r?
changes the constant factor in Eq. (21) for %, however.
For the more general lattices in question, thercfore,
the value of spar in Eq. (23) for vpa becomes 3%/
2127, but Eq. (24) for ypam remains unchanged. For
such lattices, Griineisen’s law in the form (26) can be
verified by means of Eq. (25).

The preceding results can be generalized directly to
the case of a simple cubic lattice where the mass of an
atom differs from the common mass of its six nearest
neighbors, as in the structure of the alkali halides.
If the mass ratio is significantly different from unity,
the value of spar approaches V3/2x. This value is quite
close to the corresponding coefficient, as noted above,
obtained by Einstein; in point of fact, both Madelung
and Einstein had ionic crystals of the type of the
alkali halides in mind in their treatments. For the
degenerate case of mass ratio very different from unity,
the Druyvesteyn-Meyering solid can be viewed as a
solid of independent (light) atoms, where the coupling
to the heavy atoms serves the function of providing an
interatomic force field for the light atoms. The Griinei-
sen parameter ypar is independent of the mass ratio.

C. Ideal Harmonic Solid

An ideal harmonic solid will be defined as one in
which the oscillator frequencies »; are strict constants.
The constancy of the frequencies demands that the
Griineisen parameter vanish, from Eq. (4). It follows
from Griineisen’s law (7) that the coefficient of thermal
expansion vanishes, and, from Eq. (5), that the thermal
pressure P; vanishes. The latter conclusion is in
agreement with the virial theorem, which one derives

as®
(Zapdn— L i2rtvigtn=3PV, (31)

for an ensemble of purely harmonic oscillators; since
the average kinetic and average potential energies
which enter are equal, one has P;=0. As will appear,
the Debye and the Druyvesteyn-Meyering models
make different predictions on the equation of state of
an ideal harmonic solid.

From Eq. (24) for the Griineisen parameter of a
Druyvesteyn-Meyering solid, the condition ypy=0
yields

K=Ko(Vo/V), (32a)

P=K0[(V0/V)—1], (32b)

for the bulk modulus and equation of state (correspond-
ing to P=0 for V="Vy) of an ideal harmonic solid on
this model. In this case, Eq. (18) or Eq. (21) yields
the potential energy « of a bond oscillator as

u=(3/2) Koo' (r—1,)*+0[ (r— r0)*], (33)

2 H. C. Corben and P. M. Stehle, Classical Mechanics (John
Wiley and Sons, Inc., New York, 1950), p. 202,
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where the notation O[x] has been used for terms of
order equal to or higher than that of x; the terms
indicated in this manner have already been neglected in
determining the energy levels of a bond oscillator.™
This potential energy contains no cubic term; that the
corresponding thermal expansion vanishes follows
directly from Eq. (25), within the approximation made
in obtaining the energy levels. Through cubic terms, the
Taylor expansion of # agrees within a proportlonahty
factor with the potential energy U of Eq. (28) for
m=—1and n=—2,if 4, B, and an added constant are
selected properly. With this choice of m and #, Griinei-
sen’s value (29) for ypyr vanishes, as it should.
For an ideal harmonic solid of Debye type, the
condition yp=0 yields

K=K (Vo/V)'3, (34a)
P=3K[(Vo/V)3—-1], (34b)

from Eq. (15), if K=K, and P=0 at V=V, The
equation for the bulk modulus follows directly from
the condition that »p, as given by Eq. (13), be constant.
As one notes, the results differ from the corresponding
ones of Eqs. (32) for a Druyvesteyn-Meyering solid.
In contrast to the assumption of independent pairs of
nearest-neighbor atoms, the Debye model postulates
coupled atomic oscillations; coupling is introduced by
means of the continuum approximation, by which the
actual lattice vibrations are represented by elastic
waves. Corresponding to these differences, the Griinei-
sen parameters computed on the two models do not
agree exactly, and the predicted equations of state for
an ideal harmonic solid differ.

The formal analog of Eq. (33) for an ideal harmonic
solid of Debye type, corresponding to use of the result
of yp=0in Eq. (19), is

E—E, 3 2r—r0
=-Kaot(r— ,.0)2[
3N 2 3 7

]‘*‘Of(f—fo)‘]y (35)

for a simple cubic lattice. In spite of the fact that the
equation contains a cubic term, one cannot use this
result for # in Eq. (25) to conclude that an ideal
harmonic solid of Debye type shows a nonvanishing
thermal expansion, since (E—E;)/3N cannot be
interpreted as the potential energy of an independent
pair of nearest neighbor atoms or of an independent
atom (for one-dimensional motion) in an interatomic
force field, and the validity of Eq. (25) is restricted to
such a case. It goes without saying that the difference
r—rg appearing in Eq. (35) cannot be identified as the
displacement which enters the expression for the
potential energy of a thermal oscillator on the Debey
model, since it is the normal coordinates ¢; of the
acoustic oscillators which enter the potential energy in
the Hamiltonian H of Eq. (3). The effect of thermal
expansion is to change the normal coordinates g: to
new values ¢;/, where both show mean value zero, and

GILVARRY

to change the frequencies »; to new values »; given by
vi=w1=vp(V=V0o)/Vd], (36)

which minimize the Helmholtz free energy, as Peierls®
shows.. Thus, Eq. (35) represents a purely formal
expansion for a Debye solid.

Dugdale and MacDonald®® consider a solid in which
the potential energy ¢ per nearest-neighbor pair of
atoms is such that ¢ < (R— Ry)? in terms of the difference
of the distance R between the pair from its normal
value Ro. At zero temperature, the total internal energy
in this case is proportional® to (V83— V%)%, Dugdale
and MacDonald identify such a solid as an “ideal
harmonic body” (this definition does not coincide
with the definition of an ideal harmonic solid used in
this paper). These authors note that computation of
the pressure at 7=0 from this total energy yields
vp=17% from Eq. (15) at zero pressure; since they assume
that the body in question has no thermal expansion,
they view this nonvanishing Griineisen parameter as
a paradox. However, even though the restoring force
along a bond is strictly proportional to bond extension,
resolution of the restoring forces of the bonds on the
crystal axes introduces terms containing trigonometric
factors in the corresponding components of the restoring
force on an atom, in general, since the atoms are
coupled. This effect introduces anharmonicity in the
vibration of an atom in the two- or three-dimensional
case, and thus a thermal expansion, as correctly
predicted by the Debye theory. To suppress this
behavior, one must imagine the nearest neighbor pairs
of atoms as independent, in which case the body is a
Druyvesteyn-Meyering solid with an internal energy
proportional to # of Eq. (33), and Eq. (24) for vypy
correctly yields ypar=0 at zero pressure. Note that the
effect in question does not exist for the linear chain,
where the restoring forces of all bonds are in the same
straight line; in agreement with the discussion of
Dugdale and MacDonald, one verifies independently
that ypar and vyp are 1dent1ca.l in this case.?

It is clear, accordmgly, that the paradox of DUWdale
and MacDonald arises only by imputing to a Debye
solid properties which belong to a Druyvesteyn-
Meyering solid.

III. CASE OF FINITE STRAIN

In the following, the presence of a state of finite
hydrostatic pressure, upon which elastic waves or

8 R, E. Peierls, Quanium Theory of Solids (Oxford University
Press, London, 1955), p. 31

# Strictly, the validity of this expression for the energy is
incompatible with a simple cubic lattice for nearest-neighbor
interactions only, smce no rigidity exists in this case; in such a
lattice, this expression is changed by distortion of a cubic cell
into a rhomboid, but the energy is unaffected since no bonds
change in length. Hence, for a cubic lattice, the result applies
without qualification only in the body- or face-centered case.

# The author is indebted to Dr. W. G. McMillan in connection
with the argument of this paragraph.
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pressurc changes of infinitesimal amplitude are impres-
sed, will be taken into account explicitly by means of
the formal theory of finite strain, to justify Eq. (1)
for a Debye solid and Eq. (2) for a Druyvesteyn-
Meyering solid. Thus, any restriction in the preceding
discussion to the case of infinitesimal strain will be
lifted.

A. Debye Solid

For iinite deformation, under hydrostatic pressure
alone, of un isotropic elastic solid about the arbitrary
point (¥1,P;) on its pressure-volume curve, Murnaghan
has shown'? that the change P—P; in pressure of the
silid from the point (V1,P)) to the point (V,P) is given
by a Taylor series through sccond-order terms in a
parameter ¢ as

P—Py= (3\+2u+Py)e
—3(1814-2u— 6N —du—3P)e, (37)

where N and p are Lamé parameters evaluated at the
point (V' 1,Py1), and / and »# are Murnaghan parameters
corresponding to the same point. The variable e is
connected with the volumes by the exact relation

1—2e=(V/V1)*3, (38)
which yields
1V=Vi 1 /V=V1\* 2 /V—=V1\?
e=—- + ( ) ——(——— (39)
3 Vi 18\ T, 81\ Vi

by a power-series expansioii.
From the definition (10) of the bulk modulus X,
Eq. (37) yields '

K=K,—3(VOK/dV )e, ' (40)

where
K1=A+%#+%P1, (413.)
(VOK/aV)=214+(2/9)n— (1/9)P:. (41b)

One notes that inclusion of the second-order term in
Eq. (37) for P makes the graph of P—P; against the
dilatation (V—V)/V1a parabola, instead of the straight
line corresponding to the first-order term in e. The
presence of the finite pressure introduces the correction
term P; to 3A\+2u in the first term of Eq. (37) for
P—P,, which, by Eq. (41a), changes the physical
interpretation of the Lamé parameters in terms of the
bulk modulus at finite pressure, as compared to the
interpretation of Eq. (11) for infinitesimal pressure. It
must be emphasized that the Lamé parameters A
and u, and the Murnaghan parameters ! and #, are
functions of 2, in general.

By a fundamental theorem of Murnaghan,'” an
elastic body which is initially isotropic remains so
when subjected to a finite strain due to hydrostatic
pressure alone; the initial state (V1,P)) above must be
produced in thic manner. If a general infinitesimal
stress is superposed in this situation, the body remains

2
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approximately isotropic. Hughes and Xeliy* have
extended a prior result of Murnaghan'? to show that
the rcsponse of the solid to the superposed infinitesimal
stress in this case is completely specified by two
gencrulized Lamé parameters L and M, in a manner
entircly analogous to the specification by A and u in
the infinitesimal case. The values of L and 2/ are given
by

L=\+P1— (61— 2m~+n—2N—2u— P;)e,

ZA™ -\
(42a)

rA D
(24D

M=pu—P1— Bm—Sn+3N-F3u+11)e,

in which , like / and #, is a Murnaghan parameter
evaluated at (V1,P). :

he speeds C; and C, of longitudinal and transverse
waves, respectively, of infinitesimal amplitude super-
poscd on a state of finite strain due to hydrosiatic
pressure, are given by equations analogous to Eqs. (9)
in the infinitesimal case, as .

Ce=(L+2M)/p, Cir=i/p, (43)

where p is the density corresponding to the volume V.
Hughes and Kelly give expressions for L and M which
omit terms in P, since these authors referred the body
to an initial state of zero pressure, for experimental
purposes. If use is made of the relation p=po(1+3e)
obtained from Eq. (39), for p in terms of an initial
density po, Egs. (43) reduce to the corresponding
expressions of Hughes and Kelly for 2,=0, and agree
with the corresponding relations of Brillouin.

With K given by Eq. (40), the values of L and M
satisfy the relation

K=L+3M, (+4)

analogous to Eq. (11) in the infinitesimal case. The
expression (12) for the Poisson ratio in the infinitesimal
case must be replaced for finite strain by a generalized
Poisson ratio Z defined by

>=3L/(L+M). (45)

The stability conditions® K, M >0 require that
2<%, and one obtains £—¢ in the limit P;, P—0.
With introduction of Z, the response of the solid under
finite strain to a superposed infinitesimal stress of
general type can be described completely by the two
parameters K and Z, instead of L and /.

Use of Egs. (44) and (45) in the analog of Eq. (8)
obtained by replacing ¢;and ¢, by C;and C,, respectively,
yields

VD:SNII((M—I/ZK!HV}IG (46)

for the Debye frequency »p, where S=s5(Z) in terms
of sp of Eq. (14). Corresponding to the case of Sec.
IIA, it is necessary that 2 be constant to satisfy the
Griineisen postulate that the frequencies of the longi-
tudinal and transverse waves show the same volume

variation. Under this assumption, the definition (4)

% D, S. Hughes and J. L. Kelly, Phys. Rev. 92, 1145 (1933).
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yields Eq. (15) for the Griineisen parameter on the
Debye theory, which is the result obtained without
use of the formal theory of finite strain. By application
of Eq. (15) at the point (V1,P1), with use of Egs. (41),
the expression for vp becomes

vo=—3[14 (1814-2n—P,)/ (3\+2u+P))], (47)

in terms of Lamé and Murnaghan parameters.
For an ideal harmonic solid of Debye type, the
requirement that vp of Eq. (15) vanish yields

P=P+3K.[(V/V)B—1] (48)

as the corresponding equation of state, if the constant
of integration is evaluated at the point (V,,P;). One
recovers Eq. (34D) if use is made of Egs. (34) to relate
Kjand P, to the bulk modulus K at the normal volume
Vo; thus the equation of state shows a transitivity
property. Use of the same relations for K; and P, in
Eq. (41a) yields

A -Fu=K,, - (49)

so that the combination of Lamé parameters on the
left is a constant. From Eq. (41b), one obtains

6l+2n=—K,, (50)

in which the combination of Murnaghan parameters is
constant. The last equation imposes no restriction on
the second-order coefficient »; this parameter must be
chosen as a function of volume so that 2 of Lq. (45)
has the value o, which must be taken as a constant, so
that the Griineisen postulate is satisfied for the fre-
quencics. Accordingly, the Lam¢é parameters N and p
have constant values separately for an ideal harmonic
solid of Debye type.

The fact that the Lamé parameters are constant for
an ideal Debye solid means that the equation of state
is identical with that obtained by Murnaghan!’ on

J. GILVARRY

the linear theory of finite strain. The equation of state

given by Murnaghan, corresponding to the “integrated |

linear theory of finite strain,” which was used in IIJ
to derive the Simon equation for the fusion curve,
reduces to Eq. (34b) if the Griinesisen parameter of [}]L
solid on the fusion curve vanishes. One notes that the
sign of the combination of Murnaghan paramecters in
LEq. (50) is negative, which is agreement with the
general results of measurements of these parameters
made by Hughes and Kelly on various solids. The
signs of the second-order coefficients were predicted by
Brillouin to be negative in general, as is necessary if the
wave velocities increase with pressure.

As a check on the assumption of constant 2, values
of this parameter from experimental results of Hughes

and Kelly for polystyrene and for Pyrex glass are

shown in Fig. 1, as a function of pressure. Comparison
of Fig. 1 with Fig. 1 of I and Fig. 1 of II shows that the
assumption is fulfilled reasonably as compared to the
corresponding assumption on o.

B. Druyvesteyn-Meyering Solid

For the change E— E,; in total energy of a solid from
the point (V1,P1) to the point (V,P) under a change in
hydrostatic pressure,
expression!’

E—E\=Vi[3Pie+(3/2) 3N+2p)e*— (9i+n)e*], (51)

which, as one verifies, yields Eq. (37) for P— P;, with
use of Eq. (38). By means of the expansion (39),
one obtains

E‘—E1=—P (V V1)+1(3)\+2#+P1)
X (V- V;)’/Vri- (1/54) (181+25—9\
—6}1—4P1)(V Vl)x/Vl (52)
The first term in this expression is an energy of compres-
sion whose presence ensures that — (0E/dV);=P,,

corresponding to the fact that the total energy of the
solid cannot possess a minimum at (Vi,P;) unless

P1=0. For a Druyvesteyn-Meyering solid of N atoms |

in volume V, the remaining energy of compression can
be represented as the potential energy of 3N independ-
ent bond oscillators of potential energy « by

E— E1+P1(V— V}) =31V%, (53)

which replaces Eq. (20) in the infinitesimal case. In

contrast to E, u is such that (92/0V),=0, corresponding |

to the fact that the potential energy of an oscillator
must possess a minimum at (V1,2)).
The definition (4) of the Griincisen parameter yiclds

V= VDA1[1—3'YI)M (f—fx)/n] (54)

Murnaghan has given the |

for the frequency » of a bond oscillator, if 7, is the |
value of the interatomic distance r corresponding to '

the point (V1,P,); this expression replaces Eq. (17) in
the infinitesimal case. The corresponding potential
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energy # of the oscillator becomes

u=atmvpr (r—r1) 1= 2vpu(r—r1)/r1], (55)

analogous to Eq. (18). By means of Egs. (52) and (53),
an alternative expansion of # in powers of r—7; can
be obtained. Comparison of the result with « as defined
by Eq. (55) yields

VD,\{=SDAIIVl/aM_I/ZKlanl]IG (56)

as the characteristic frequency, if note is taken of
Eq. (41a), and yields

vou=—}—%4(18142n— P))/ (3\+2u+P1) (57)

directly as the corresponding Griineisen parameter in
terms of Lamé and Murnaghan parameters. One
obtains

vou=—3%[1+4 (9 InK/d InV);] (58)

from Egs. (41); this result corresponds exactly with
Eq. (24) obtained for zero pressure. By direct use of
2q. (25) to calculate (r—r1)w, one can verify Griinei-
sen’s law under finite strain. The analog of Eq. (27)
becomes

(0%u/dr®) 1= —S4ypuKy, (59)

which, with reference to Eq. (57), brings out a point
emphasized by Druyvesteyn and Meyering, that the
anharmonic term in the potential energy of an atom in
the interatomic force field is a function of the second-
order elastic coefficients.

For an ideal harmonic solid of Druyvesteyn-Meyering
type, integration of the relation ypa=0 for an arbi-
trary point and evaluation of the constant of integration
at the point (V1,P;) yields

P=P+K[(VyV)-1], - (60)

as the equation of state. This expression reduces to
Eq. (32b) by use of Egs. (32) to evaluate K; and Pi;
thus the equation of state shows a transitivity property
(as noted for the corresponding Debye solid). Note
that A4 (2/3)u must be such a function of pressure that
Egs. (32a) and (41a) are satisfied simultaneously.
For « in the case of this ideal solid, one obtains an
expression corresponding exactly to Eq. (33), from
which direct use of Eq. (25) to compute (r—r1)a yields
a vanishing thermal expansion.

IV. COMPARISON WITH EXPERIMENTAL DATA

It is clear from the foregoing that the two evaluations,
vp and varp, for the Griineisen parameter as evaluated
from the equation of state, correspond to two different
models. That both models represent approximations
follows from the more refined analysis of Barron,*
and from considerations noted by Slater® and Zener?®
in .connection with the Debye model. However, from

T, H. K. Barron, Phil Mag. 46, 720 (1955).
% C. Zener, Elasticity and Anelasticity of Melals (University of
Chicago Press, Chicago, 1948), p. 30.

TasLE I. Comparison of average Griincisen constants from
equation of state and from Griineisen’s law.

(Gn‘i:oiscn
YD YDM Ym,D +m, DM law)
Average of
19 clements 1.9, 1.5 1.96b
Average of
14 elements 1.8¢ 1.5¢ 1.8¢

a Values for 10 elements (Mn, Fe, Co, Ni, Cu, Pd, Ag, W, Pt, and Pb)
from Slater (reference 3); values for 9 elements (Li, Na, K, Rb, Cs, Al, Au,
Mo, and Ta) from Gilvarry (reference 39).

b Values from Griineisen (reference 20), revised in the cases of the alkali
metals and of Al, Au, Mo, and Ta to correspond to incompressibilities given
by Gilvarry (reference 39).

¢ From Table V of I (values for Ga, Bi, and Sb excluded).

the artificial nature of the Druyvesteyn-Meyering
solid as compared to the Debye model, one expects
vp to represent a better approximation than vypar.
Dugdale and MacDonald state that use of vypa, as
against vp, improves slightly the over-all agreement of
values of the Griineisen constant from the equation
of state and from Griineisen’s law, for the elements in
Slater’s tabulation.? However, this tabulation shows
large deviations in the two evaluations of the constant
for the three alkali metals included and for some
relatively incompressible metals (Au, Mo, and Ta).
A redetermination by the author®® of compressibility
parameters for these elements (with inclusion of Rb
and Cs) from more recent experimental data of Bridg-
man reduced the discrepancies in these cases, so that
the contention of Dugdale and MacDonald could not
be maintained.

One should expect the inevitable experimental
inaccuracies to cancel to a significant extent in a
comparison of the averages for a reasonably large
number of elements, of evaluations of the Griineisen
constant on particular models. In Table I, average
values for 19 elements of vp and vpar, as obtained from
the equation of state for zero pressure, are compared
with the corresponding average obtained with use of
thermal parameters from Griineisen’s law (7) ; one notes
that agreement of yp with the value from Griineisen’s
law, shown in the last column, is excellent. An everage
value for 14 elements is shown likewise for the Griineisen
constant v, p of the solid at fusion, given in I as

Ymp=3+32¢KnAV/L, (61)

where K, is the bulk modulus of the solid at melting,
AV and L are the volume change and latent heat of
fusion, respectively, and ¢ is a parameter of the order
of unity. This equation has been derived in I on the
basis of Eq. (15) for the Griineisen parameter, and thus
is valid on the Debye theory; the corresponding value
vm oy for a Druyvesteyn-Meyering solid is vm p—3.
The agreement shown by the table is exact, within
the accuracy of the data, between v, p and the corre-
sponding value derived from application of Griineisen’s

# 7, J. Gilvarry, J. Chem. Phys. 23, 1925 (1955).
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law to the solid at the melting point. These data
suggest that the assumptions underlying the evaluation
of the Griineisen parameter from the equation of state
on the Debye model are met reasonably well by
elementary solids, on the average.

V. CONCLUSION

The results obtained show that formal consideration
of finite strain leaves the evaluation of the Griineisen
parameter irom the equation of state unaltered, for
either a Debye solid or a Druyvesteyn-Meyering solid.
Hence, no reason exists on the basis of the theory of
finite strain for the arbitrary modification in the
evaluation of the parameter for a Debye solid, as
proposed by Dugdale and MacDonald. This statement
presupposes that the wave amplitudes of the lattice
vibrations are infinitesimal. It is not denied that an
intrinsically anharmonic theory, such as that of Born
and Brody* or of Hooton,”” may demand revision of
the value of the Griineisen parameter as determined
from the equation of state, but such a model likewise
requires revision of the value of the characteristic

GILVARRY

frequency, as fixed by Eq. (8) on the Debye theory,
Underlying the definition of the Griineisen parameter
is the postulate that all lattice frequencies vary with
volume in the same manner; it is not obvious, @ priori,
that this requirement can be met within the framework
of an essentially anharmonic theory.

The development of I, II, and III is based on the
Debye-Waller theory derived from the Debye model, in
contrast to the original Lindemann theory based on an
Einstein model. Since the form of Griineisen parameter
taken in the papers in question corresponds to the
Debye theory, it is felt that in this respect the results
have been justified fully.
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With the aim of determining to what extent the energy distribu-
tion of secondary electrons from targets of Mo and W may contain
fine structure, measurements have been made using primary
energies from 100 to 2000 electron volts. An electrostatic analyzer
of the 127-degree type having an experimentally determined
resolution of one percent was used. Observations of the pressure
in the vacuum system, after heating the target above 2000°K and
cooling to room temperature, showed that an energy spectrum
could be recorded before formation of the first monolayer of
contamination on the target surface.

Energy distribution measurements revealed: (1) Several sub-
sidiary maxima at fixed differences in energy from the primary
energy, these differences being characteristic of the target material
and independent of the primary energy itself. (2) Several sub-

I. INTRODUCTION

HE general shape of the energy distribution of
secondary electrons from a metal target is that

of a smooth curve whose two principal features are a
large maximum of slow secondaries occurring near two
or three volts and a sharper, usually smaller maximum,
caused by elastically reflected primaries. Furthermore,
several workers have observed some fine structure in the

* Now at the Department of Physics, Queen’s University,
Kingston, Ontario, Canada.

sidiary maxima in the energy distribution at fixed positions along
the energy scale lying between 10 and 500 electron volts, charac-
teristic of the target material, and independent of the primary
voltage. The maxima described in (1) are considered to be primary
electrons reflected after suffering discrete losses of energy to the
target. These discrete losses are believed to indicate the positions
of the higher energy levels of the target material. The maxima

described in (2) are interpreted as Auger electrons. Combining the | |

energy level values determined from the discrete loss measure-
ments with energy values for the deeper lying levels available
from x-ray studies, it is possible to predict the energies with which
Auger electrons might be expected to be emitted. Some of the
predicted energies for Auger electrons agree reasonably well with
with the energies observed experimentally both for Mo and for W.

energy spectrum of secondaries from a number of dif-
ferent metals. Rudberg,! studying Cu, Ag, and Au,
reported inelastic reflection of primary electrons that
had suffered discrete losses of energy, these losses being
independent of the primary energy and characteristic
of the target material. Haworth??® made similar observa-

tions for targets of Mo and Cb but observed further that

! E. Rudberg, Phys. Rev. 50, 138 (1936).
2 L. J. Haworth, Phys. Rev. 48, 88 (1935).
3 L. J. Haworth, Phys. Rev. 50, 216 (1936).
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