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V. CONCLUSION 

The results of this paper yield a practical method 
of determining the latlice corrections to thermodynamic 
fUllctions computed on the Thomas-Fermi model. No 
attempt has been made to take account of the long­
range order which may be present in the amorphous 
phase above t.he fusion temperature. Presumably, the 
existence of such order must introduce corrections to 
thermodynamic functions computed on the Thomas­
Fermi model, analogous to the lattice corrections. 

Uott's theory of liquidsU may provide an approach 
to such questions. 
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A generalization of the Lindemann law given previously is used in conjunction with the Murnaghan 
equation of st:l.te for a solid to derive a 1000W of reduced states for fusion, valid for the case of c1assic01.I 
excitation of the lattice vibrMions at mellin~. If the bulk modulus and volume of the solid <1.t fusion <1.nd 
the melting temperature are reduced by dividing the quantity in question by its corresponding value :It 
the origin of the fusion curve, any reduced variable of this set C<1.n be ('xprcssed as a power of O1.ny olher, 
with an exponent involving a constant appearing in the l\furn01.ghan cCjuation. It is shown that thc mtio 
of the latcnt heat to the volume change of fusion obeys a similar law of reduced statcs, on the basis of an 
<1.ssumed form of the volumc dependcnce of thc Grtineisen parameter of the solid along thc fusion curve. 
The constant appearing in the Murnaghan equation of state is intcrpreted physically in terms of an avcmge 
Grtineisen parameter of the solid. The Jaw of reduced states yields an immediate derivation of the empirical 
Simon equation for the fusion curve. For the alkali metals, it is shown that experimental values of the 
temperature exponent in the Simon equation are quantitatively compatible with the theoretical evaluation 
given, and, furthermore, that the theory can predict approximate values of the exponent, in practice. 

THE empirical equation! 

10g(Pm+A)=B 10gT m+C, (1) 

where P": and T m are the fusion pressure and absolute 
temperature, respectively, and A, B, and C are dispos­
able coefficients, has been proposed by Simon to 
represent the fusion curve. By evaluating the constant 
C at the triple point of temperature TI (and negligible 
pressure), he has put the equation in the form 

(2) 

for elements of low melting point; this form will be 
referred to as the Simon equation. If a reduced pressure 
P ",' and temperature T m' are defined by P ml A and 
T ",ITt, respectively, Eq. (2) yields the Simon law, 

(3) 

of corresponding states for fusion. This law is analogous 
to the law of corresponding states for a van der Waals 
gas, with the constant A and the triple-point tempera­
ture as reducing parameters corresponding to the 
critical pressure and temperature, respectively. 

• Work sponsored by the U. S. Atomic Energy Commission. 
1 F. Simon, Z. Electrochem. 35, 618 (1929); Trans. Faraday 

Soc. 33, 65 (1937). 

If the constants A and B are selected by t rial, 
Eq. (2) yields a good fit to the observed melting curves 
of solids of low melting point. Values of the constants 
for various elements, as derived from experimental 
work prior to 1937, are tabulated (except for D 2)2 by 
Ruhemann and Ruhemann.3 Later work4 has extended 
the pressure range over which the equation is applicable. 
The Simon exponent B is roughly 2 for most oi the 
substances (He, H 2, Ne, N 2) of low melting point, 
except for A, for which it is somewhat over unity. 
For the alkali metals, TI in Eq. (2) must be replaced by 
the normal melting temperature; reported valuesS oi 
the exponent B are approximately 4. Values quoted for 
the Simon exponent by different authors frequently 
are fairly discrepant for the same element. Part of the 
variance is presumably due to the fact that a require­
ment merely of fit to the data does not necessarily 

2 K. Clusius and E. Bartholome, Z. physik. Chern. B30, 237 
(1935). 

3 M. Ruhemann and B. Ruhemann, Low Temperature Physics 
(Cambridge University Press, London, 1937), p. 97. 

• Holland, Huggill, Jones, and Simon, Nature 165, 147 (1950); 
Holland, Huggill, and Jones, Proc. Roy. Soc. (London) A207, 
268 (1951); ]. S. Dugdale and F. E. Simon, Proc. Roy. Soc. 
(London) A21B, 291 (1953) . 

, F. Simon and G. Glatzel, Z. anorg. u. allgem. Chern. 178, 309 
(1929). 
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fix the parameters of a two-parameter curve uniquely, 
although Simon6.7 has indicated the use of the in itial 
slope of the fusion curve (or of Clapeyron's equation) 
to reduce Eq. (2) to a one-parameter curve. 

Domb8 has derived the Simon equation theoretically 
from the order-disorder fusion theory of Lennard-Jones 
and Devonshire,9 for the range of moderately high 
pressure where a Lennard-Jones intermolecular poten­
tial is a sufficient approximation. His expression for 
the Simon exponent is B= 1+3/n, where n (about 9 
to 12) is the (negative) exponent of the repulsive term 
in the potential. A derivation from the same model has 
been given by de Boer10

; he obtains the constant value 
1.25 for the Simon exponent. Both these evaluations 
of the Simon exponent are somewhat too low to corre­
spond to reported values for the elements of low 
melting point (except for argon), and they are definitely 
too low to correspond to published values for the 
alkali metals. Salterll has used the Lindemann law and 
the Debye equation of state to obtain a fusion equation 
identical in form with Simon's equation, with the 
exponent evaluated in terms of Gruneisen's constant 
for the solid. He notes that use of normal values of 
the Gruneisen constant in his expression yields values 
of the Simon exponent considerably below reported 
values for the alkali metals, but in reasonable accord 
for argon. 

Recently, the author has given a generalized Linde­
mann law which may represent a basic criterion of 
fusion, at least for isotropic monatomic solids.12 The 
generalization yields an experimentally verified relation 
connecting the Gruneisen constant of the solid at 
melting with fusion parameters, and explains the 
validity of an empirical relation of Kubaschewski.13 
The theory yields the conclusion that the fusion curve 
is determined by conjunction of the equation of state 
of the solid with the generalized Lindemann law. In 
this paper, it will be shown that, by selection of the 
l\lurnaghan equation of state l .' for the solid, the theory 
of I yields a fusion equation identical in form with 
Simon's equation and providing quantitative agreement 
with experiment for the alkali metals. The discussion 
presupposes that the normal vibrations of the solid at 
melting are classically excited, so that the quantization 
parameters Qm and Om of I are equal to unity and zero 
respectively. This limitation excludes cases (such as 
H 2, D 2, and He at low temperature) in which the 
zero-point energy at fusion is relatively large. 

e F. E. Simon, in L. Farkas Memorial Volume (Research Council 
of Israel, Jerusalen, 1952), p . 37. 

7 F. Simon, Nature 172, 746 (1953). 
8 C. Domb, Phil. Mag. 42, 1316 (1951). 
g]. E. Lennard-Jones and A. F. Devonshire, Proc. Roy. Soc. 

(London) A170, 464 (1939). 
10 J. de Boer, Proc. Roy. Soc. (London) A215, 5 (1952). 
II L. Salter, Phil. Mag. 45, 369 (1954). 
12]. J. Gilvarry, this issue [Phys. Rev. 102, 308 (1956)J, 

referred to hereafter as 1. 
13 O. Kubaschewski, Trans. Faraday Soc. 45, 931 (1949). 
14 F. D. Murnaghan, Finite DefoTlIIatiOtI of an Elastic Solid 

(John Wiley and Sons, Inc., New York, 1951), p. 70. 

r. LAW OF REDUCED STATES 

The equation of state of the solid will be taken as 
that derived by Murnaghanl4 from his "integrated 
linear theory" of finite strain. If P is the pressure 
corresponding to the volume V of the solid, this equation 
of state is 

(4) 

where KO is the normal bulk modulus (incompressibility) 
corresponding to the normal volume V 0, and 7J is a 
constant. The bulk modulus K of the solid follows as 

(5) 

By determining 7J empirically, Murnaghan has obtained 
an excellent fit of Bridgman's pressure-volume data on 
Na, for pressures up to 100 kilobars. The value obtained 
for 7J (and the corresponding KO) varies somewhat with 
the pressure range selected for direct fit. The largest 
relative deviations are found for the lowest pressures, 
which corresponds to the fact that Eq. (4) represents an 
approximation in the large (rather than an osculating 
approximation at the origin), 

The bulk modulus Km of the solid at melting can be 
regarded as a function only of the corresponding 
volume V fA of the solid. Since the Murnaghan equation 
specifies K, by Eq. (5), as a function only of the volume, 
application of this equation of state to the solid along 
the fusion curve is a legitimate approximation. Hence, 
Eq. (5) yields 

(6) 

where K""O and V m, 0 are the values of Km and V no, 

respectively, corresponding to the origin of the fusion 
curve. In principle, the parameter 7J should be deter­
mined from the pressure-volume relationship for the 
solid along the fusion curve; unfortunately, such data 
are not usually available from experiment for the 
elements of higher melting temperature (such as the 
alkali metals). Physical validity can be claimed for use 
of the Murnaghan equation of state for the solid at 
fusion only if values of 7J inferred from fusion curves 
are reasonably consonant with those obtained from 
experimental equations of state. 

The Lindemann law for the case of classical excitation 
of the lattice vibrations at melting of a monatomic 
solid can be written 

(7) 

where R is the gas constant, T m is the absolute melting 
temperature corresponding to the molar volume V m, 

and Q, defined in I, is a function of Poisson's ratio at 
fusion and of the Lindemann constant. Under the 
assumption of I that the fusion value of Poisson's 
ratio is a constant, use of Eq. (6) in Eq. (7) yields 

T miT m, 0= (V,n, o/V m)"1, (8) 

where T m, 0 is the temperature corresponding to the 
origin of the fusion curve. From this equation and 
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Eq. (6), one obtains 

KmlKm. 0= (T miT m. 0) b, 

where 
(9) 

(10) 

Equ:J.tions (6), (8), and (9) yield a law of reduced 
states for fusion, in which the reducing parameter for 
Km, Till, or V m is the corresponding value at the origin 
of the fusion curve; any reduced variable can be 
expressed as a power of any other, with an exponent in 
terms of the Murn:J.ghan parameter .,.,. The law is 
referred to as one of reduced (rather than correspond­
ing) states in accordance with Simon's nomenclature,6 
since the reducing parameters are not constant as in 
the law of corresponding states for a van der Waals 
gas. The relations are consistent with the Lindemann 
law (7) in the form 

T miT".. 0= (Kml Km. 0) (V mlV m, 0), (11) 

which presupposes that the Poisson ratio of the solid 
is constant along the fusion curve. 

It is shown in I that the ratio of the latent heat L 
to the volume change A V of fusion is given by 

(12) 

where 'Y", is the value of the Grlineisen parameter of 
the solid at the point (T m,P m) of the fusion curve, 
and q is a parameter defined in 1. The quantity 'Ym-t 
can be regarded as a function only of the volume V m 

of the solid at fusion. Its analytic dependence on V,,, 
will be taken as 

('Ym-t)/('Ym.o-t)= (V mlV m.O)I', (13) 

where 'Ym.O is the value of 'Ym corresponding to the 
origin of the fusion curve, and f.L is defined by 

(14) 

analogously to the definition of 'Ym in terms of the 
fusion value of the Debye frequency. On the assumption 
that f.L is constant, its value can be inferred from the 
equation 

tf2TmldP",2= - 2(1 +f.L)('Y",-t)T mlq2Km2 (15) 

of I, as applied at the origin. The parameter q is of the 
order of unity, with the average value 1.2 over the 
elements discussed in I; it can be presumed for purposes 
of the present discussion that q shows only small 
variation over the fusion curve and can be assigned 
the constant value qo corresponding to the ongm. 
Under these assumptions, use of Eqs. (6) and (13) in 
Eq. (12) yields the law 

(LI A V)I a= (V m. olV m)'t+14 (16) 

of reduced states for LI AV, where the parameter a 
is defined by 

(17) 

By Eq. (12), the parameter a appearing as the reducing 
parameter for LI A V is equal to the value of the latter 
quantity at the origin. Bridgman has expressed 
opposition to the idea of a law of corresponding states 
for fusion,1s since L and A V separately do not exhibit 
definite signs of such a law (except possibly for the 
alkali metals)16; note, however, that it is the ratio 
LIAV which obeys the law (16) of reduced states. 

By means of Eq. (8), one can write Eq. (13) as 

('Y",-t)/('Ym.o- ·!)= (T m.olT m)fJ, (18) 
where 

(19) 

Similarly, the law (16) of reduced states for LI A V can 
be written 

in which 
(LIAV)la= (T miT m,O)B, 

B=b+(3= (.,.,+f.L)/(.,.,-1), 

(20) 

(21) 

where b is defined by Eq. (10) . It is clear that any 
reduced variable corresponding to the set K m , V m, T m, 
'Ym-t, and LIAV can be expressed as a power of any 
other. 

Equation (13) demands that the Grlineisen parameter 
'Ym of the solid be a variable along the fusion curve. 
The Murnaghan parameter.,., appearing in Eq. (6) can 
be interpreted in terms of an average value 'Ym.A' of the 
Grlineisen parameter 'Y m over the fusion curve, by 
means of the equation 

(22) 

given in 1. Application of this equation to Eq. (6) 
corresponding to the Murnaghan equation yields 

(23) 

Note that this identification in terms of an average 
Grlineisen constant yields a physical interpretation of 
the Murnaghan parameter.,., (introduced as an empirical 
constant in the integrated linear theory of finite strain) 
which applies in general and not merely at fusion. 

It has been emphasized that the Murnaghan equation 
of state represents an approximation in the large for 
the equation of state along the fusion curve. If the 
Murnaghan parameter 7) is chosen by fitting the 
pressure-volume curve over a small range of pressure 
near the origin of ,the fusion curve, one must obtain 

.,.,0=2'Ym.o+t (24) 

for.,., in terms of the Grlineisen parameter at the origin, 
as follows from Eq. (22) or Eq. (23). In this case, 
Eqs. (6) and (8) can be written 

Km=Km.O(V m.olV m)2'Y ... o+1/3, (25a) 

T m= T m. o(V m. olV m)2('Y ... 0-1/3), (2Sb) 

15 p, W. Bridgman, Revs. Modern Phys. 7, 1 (1935). 
1G P. W. Bridgman, The Physics of lligh PrcsSlIre (G. Bell and 

Sons, Ltd., London, 1949),'p. 211. 
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respectively, and Eq. (9) becomes 

Km= Km. oCT miT m. O)b', 
where 

(26) 

b'= (6I'm. 0+ 1)/[2(3I'm.o-l)]. (27) 

The three equations (25a) (25b), and (26) are valid 
only as osculating approximations at the origin; by 
means of Eq. (23), one can show that they differ only 
in the su bstitu tion of I' ",.0 for I'm. Av from their cor­
respondents in the large, Eqs. (6), (8), and (9), 
respectively. 

These osculating approximations are derivable 
directly from the Grlineisen postulate that the Debye 
frequency, in general, is a power-law function only of 
the volume; if Vm is the Debye frequency of the solid 
at melting, this assumption yields the expression 

(28) 

where G is a constant, for Vm in the neighborhood of the 
origin of the fusion curve. The Debye frequency of a 
monatomic solid at melting is given likewise by 

(29) 

where M is the atomic weight, N is Avogadro's number, 
and S m is a function, defined in I, of the value of 
Poisson's ratio of the solid at melting. On the assump­
tion of I that the Poisson ratio at fusion is constant, 
comparison of Eqs. (28) and (29) yields Eq. (25a). 
Equation (2Sb) and thus Eq. (26) then follow directly 
from Eq. (7), or from the identification V",= VL, where 
v L is the Lindemann frequency defined in r. 

II. SIMON EQUATION 

The general result, 

dP m/dT m= qK m/2(l'm-t)T m, (30) 

for the slope of the fusion curve has been obtained in r. 
If q is given the constant value qo corresponding to the 
origin, integration of this equation with use of Eqs. 
(9) and (18) yields 

p",-Pm • O= (a/B)[(T miT m.o)B-lJ, (31) 

where Pm. 0 is the pressure corresponding to the origin 
of the fusion curve, a is given by Eq. (17), and B is 
defined by Eq. (21). Equation (31) has precisely the 
form, with A = a/ B, of the Simon equation (2) (except 
for the introduction of the constant Pm. 0 of integration 
to make both sides of the equation vanish together at 
the origin). The equation assumes a reduced form, 
analogous to Eq. (20) for L/ A V, if the left-hand side 
is rewritten as (Pm-Pm.O)/a. . 

Equation (31) of the fusion curve yields the correct 
initial slope demanded by Eq. (30), and the correct 
initial value a of the ratio L/ A V required by Eq. (12); 
thus Clapeyron's equation is satisfied at the origin, 
independently of the value of the Simon exponent B. 
As has been pointed out, the parameter J.I. of Eq. (14), 

which corresponds to the volume varIatIOn of 1'''-1 
and enters B through {3 of Eq. (19), can be evaluated 
by application at the origin of Eq. (15) forcJlT,,,/dP,,,2. 
In this case, it follows that Eq. (31) yields the correcl 
curvature of the fusion curve at the origin corresponding 
to Eq. (IS); note, however, that this equation has been I 

derived in I on the assumption that q is constant. 
The derivation of Simon's equation given by Salter,ll 

based on the Debye equation of state, assumes that 
the Grlineisen parameter has a constant value. His 
result is essentially 

P"'-P"" o=A[(T m/T",. O)b' -lJ, (32) I 

where A is specified only as a constant and b' is defined 
by Eq. (27). Since the exponent b of Eq. (10) can be 
written in terms of the average Grlineisen parameter 
of Eq. (23) as 

b= (61' m. Av+ 1)/[2 (I'm. Av-1) J, (33) 

it follows that Salter's evaluation of the Simon exponent 
corresponds to substituting I'm.O for 1m. Av in band 
taking {3=0 (corresponding to J.I.=O) in Eqs. (21) for B. 

Equation (30) for dP m/ dT m is susceptible to a 
physical interpretation. If one writes the parameter q, 
in a form deducible from results of I, as , 

(34) I 
in which ct~. is the coefficient of volume expansion of 
the solid at fusion, substitution of this expression into 
Eq. (30) yields 

dPm/dT m=Km/2(l'm-t)T m+K",ctm. (35) 

The second term on the right-hand side of this equation I, 
is given by Grlineisen's law as ,~ 

where C V. m is the heat capacity of the solid at fusion, 
and the subscript m on the last term designates evalua­
tion of the partial derivative for the solid on the fusion 
curve. Hence, the second term in Eq. (35) for dP m/ dT m 
corresponds to the increment in thermal pressure of 
the lattice as T m is increased. Thus, the assumption 
q=qo made in deriving Eqs. (20) and (31) corresponds 
to the postulate that [(ap/aT)vJm bear a constant 
ratio to the total derivative dP",/dT m along the melting 
curve. From the fact that 

dP m/dT m= [(ap/aV)T J",dV",/dT", 
+ [(ap/aT) I'J ... , (37) 

it follows that 

[(ap/av)r J",dV",/dT m= K .. .j2(1'",-})T",. (38) 

Hence, the first term in Eq. (35) for dP",/dT", corre­
sponds to the increment, as Tm and thus V m is changed, 
of that part of the pressure which depends directly on 
the volume, that is, the pressure corresponding (for 
low or moderate compression) to the potential energy of 
an atom in the interatomic force field. Salter's derivation 
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of the Simon equation assumes that this term is 
constant j thus he obtains the correct form of the 
exponent b' of Eq. (27) in terms of "1 .... 0 but fails to 
obtain lhe analog of the expression a/ B corresponding 
to the Simon coefficient. 

Simoni has shown lhat the coefficient A of Eq. (2) 
is of the order of the internal pressure of the solid. 
Approxim:J.te numerical consistency of this result with 
the evaluation of the Simon coefficient given here can 
be shown by me:ms of Griineisen's law and an expres­
sion7 for the internal pressure from the Grtineisen 
theory of solids. 

III. COMPARISON WITH EXPERIMENT 

In this section, the preceding theory will be compared 
with Bridgman's experimental resultsl7 on the fusion 
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FIG. 1. Comparison of the law of reduced states (straight line) 
for the ratio L/ A V in terms of the fusion temperature, against 
Bridgman's experimental data for four alkali metals. Values of 
the Simon ell.llonent B (tabulated in the fourth column of Table I) 
selected in each case for best over-all fit to the data. 

curves of the alkali metals Cs, Rb, K, and Na, extending 
over pressure ranges up to 12 kilobarsj the element Li 
will be ignored, since Bridgman's measurements were 
made on a somewhat impure sample.18 To make a 
comparison of Eq. (20) and of Eq. (31) with the data, 
values of K .... 0 entering the reducing parameter a are 
available from Table Iof I. Valuesof'Ym.ofromEq. (12), 
and of qo from Eq. (31) of I, are shown in Table I, as 
evaluated to correspond to Bridgman's experimental 
values of Land fj, V at the normal melting point; the 
values of "1m. 0 given for the alkali metals in Table V of 
I correspond to data for Land tl V from other sources. 
The third entry of Table I is the parameter a of Eq. (17). 

Equation (20) states that the ordinate (LI fj, V)I a, 
when plotted against (T miT m. O)B, should yield a 

17 P. W. Bridgman, Phys. Rev. 3, 153 (1914); 27, 68 (1926). 
liP. W. Bridgman, Proc. Am. Acad. Arts. Sci. 56, 59 (1921). 
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FlO. 2. Comparison of the Simon equation (straight line), with 
values of B tabulated in the fourth column of Table I, against 
Bridgman's ell.1lerimental data for four alkali metals. 

slraight line of inclination 45°. In Fig. 1, this ordinate 
from Bridgman's experimental values of Land fj, V and 
values of a from Table I is shown as a funclion of 
(T",/ Tm.O)B for the alkali metals, where lhe Simon 
exponent B has been selected by trial in each case to 
yield the best over-all fit to the data. For the same 
value of B in each case, the values of (Pm-Pm.O)/a 
corresponding to Bridgman's pressure-temperature 
data at fusion are shown in Fig. 2 as a function of 
B-I[(T",/Tm.O)B_1Jj the data yield closely the 
straight line of inclination 45° demanded by Eq. (31) . 
The maximum error indicated at the highest ordinate 
on Fig. 2 for any element does not exceed 3%, which 
may be within the experimental error. The val ues 
of the Simon exponent B obtained for each element are 
shown in Table I, with values, for comparison, as 
determined by others from essentially the same data . 
The disparities are explainable on two counts: the 
election in this paper to obtain the Simon exponent by 
a best fit corresponding to Eq. (20), rather than to the 
Simon equation (31) directly, and the requirement of 
this theory that the Simon coefficient A be a/ B, with a 
given by Eq. (17), which insures that Clapeyron's 
equation is satisfied at the origin of the fusion curve. 

The question at issue is to show that the values of 
the Simon exponent obtained are compatible with the 
theory given. Since experimental data on the volumes 
of the alkali metals along the fusion curve are not 
available, the values of the Murnaghan parameter 1J, 

TABLE I. Parameters of the Simon equation. 

to-·. B 
,,),m,O q. bars EQ. (20) B 

Cs 1.34 1.18 0.0119 4.50 4.75" 
Rb 1.6, 1.22 0.0146 3.70 4.2 
K 1.20 1.15 0.0202 4.21 4.53 
Na 1.13 1.13 0.0454 3.15 3.56 

• Value for Cs from Simon and Glatzel (reference 5); values for Rb. K. 
Na from J. A. W. HUllgill. as Quoted by Salter (reference 11). 
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TABLE II. Parameters of fusion curves. 

~ ~ 
Eq. (15) Eq. (2 1) 

'Y .... Av 'Ym.Av '7 B 
Eq. (23) Eq. (39) Eq. (40) Eq. (21) 

Cs 3.5" 2.3 
Rb 4.7 . 3.1 
K 2.& 2.2 
Na (2. 6) (2.1) 3.79b 

(50-60 
kilobars) 

2.86 
(90-100 

kilobars) 

1.0 
1.4 
0.9, 

(1.,) 

1.10 2.6 
1.4, 3.2 
0.9. 2 .• 

(1. 0) (2 .• ) 

3.8 
3.6 
3 .• 

(3 .• ) 

• Valu es_at the origin of d2Tm/dPm' in Eq . (15) were computed from 
,econd d ltlcrences of T m os Pm from Bridgman's data (reference 17). It 
was necessary to smooth the values of fl,2T HI near the origin for K. For Nat 
the \'a~u ~s of flIT m were too erratic to permit smoothing, and the value at 
the ~ngm was t3ken as the average of values corresponding to the first 
fonT mtcn'aJs of p"" 

b See rere~ence 14. Parenthetic pressure ranges correspond to direct fit. 

which enters B, must be obtained indirectly. Values of 
the parameter J.l corresponding to the volume variation 
of "(,,,-t are shown in Table II, as determined by Eq. 
(15) from quantities evaluated at the origin; values of 
cJlT"./ dP n? were compu ted by numerical differentiation 
of the fusion temperature with respect to pressure. As 
noted, the value for Na is somewhat doubtful, as is 
that for K to a less extent. These values of J.l and the 
values of the fourth column of Table I for B yield the 
tabulated values of 1/ in the second column of Table II, 
from Eqs. (21). It is seen that the values of 1/ are 
reasonably concordant with the listed values obtained 
by Murnaghan from direct fit, over ten-kilobar intervals 
of pressure, of the pressure-volume curve for Na at 
normal temperature. 

A severer test of the assumptions underlying the 
theory can be obtained by noting that the average value 
"( m, A, of the Gruneisen parameter along the fusion curve, 
defined by Eq. (23) in terms of 1/, should be approxi­
mately equal to the average value defined implicitly by 
Eq, (18) for the variation of "(m-t with fusion tempera­
ture. The latter average is given by 

"Im,A,-t 1- (T m,o/Tm,mux)fJ-1 

"Im,O- '} (fJ-1)(T m,mnx/T ""0- 1)' 
(39) 

where T m, ma,. is the maximum temperature on an 
observed fusion curve. It is seen that agreement is 
reasonable for tabulated values of "(m.Av in Table II, 
as obtained by means of Eq. (23) from the values of 
1/ in the second column, and as obtained by means of 
Eq. (39) from the values of po and 1/ in the first and 
second columns, respectively. One should not expect 
identity necessarily, since the two evaluations of 
"1m, A, correspond to different methods of averaging. 
Finally, one notes that dYm/dT m is negative, from 
Eq, (18); the sign of the derivative agrees with the 
relation "1m, Av < "( m, 0, which holds for the values of 
"I m, A, in Table II except for one instance in the doubtful 
case of Na. 

The approximate equality of these two evaluations 

of "(m,A' yields a method of inferring the value of 1/ from 
knowledge of the values of "1m, 0 and J.l . If Eq. (39) is 
rewritten, by means of Eqs, (23) and (24), as 

1/-1 l-(Tm,o/Tm,mllx)ll-l 

(40) 
1/0-1 (fJ-1)(T m, mnx/T m, 0-1)' 

the definition fJ=J.l/(1/-1) permits one to solve the 
equation for 1/ by trial, if 1/0 and J.l are known . Values of 
7] obtained in this manner, with use of values of "1m, 0 and 
J.l from Tables I and II, respectively, are shown in the 
sixth column of Table II; the agreement with the values 
of the second column is satisfactory. Values of B from 
Eq. (21) corresponding to values of J.l and 1/ from the 
first and sixth columns, respectively, are tabulated in 
the last column of Table II; the agreement with the 
values of the fourth column of Table I is good for Rb 
and K, but the differences in the cases of Cs and Na 
reilect the sensitivity of B= (1/+J.l)/(1/-1) to the value 
of 1/-1 in the denominator. Thus, the theory given is 
able to predict an approximate value of the Simon 
exponent for the alkali metals; by way of con trast 
with the values of the last column of Table II, note that 
Sal ter's evaluation (27) of the Simon exponent yields 
numbers of the order of 1.5, 

By use of a Taylor expansion of Eq. (18) to obtain 
an evaluation of "1m, A" one finds the explicit expression 

1/"-'H 1/0+ 1 + [(1/0- 1)2-4po(T m, max/T"" 0-1)Jl/2}, (41) 

valid as an approximation provided T m , max/T m, 0 is 
sufficiently small. This equation yields values of 1/ 
differing from those corresponding to Eq. (40) by about 
6% on the average for Cs, Rb, and Na; it fails for 
K, where the large value of T,,,, max/T m, 0-1 (in this 
case about t) makes the radical imaginary. 

On the assumption that the heat capacity of the 
solid at fusion has the Dulong and Petit value, Eqs. 
(36) and (34) of I yield the approximation 

(42) 

in which n is the parameter appearing in Eq. (7) . Use 
of Eq. (18) in this expression for q with values of J.l 
and 1/ from Table II, permits one to evaluate the 
minimum value qmin of q corresponding to the tempera­
ture T m, max on a fusion curve. The relative difference 
(qO-qmin)/qO is largest for the elements K and' Cs 
showing the largest ordinates in Fig. 2, in which 
cases it amounts to about 10%. Since this value 
probably exceeds the experimental error in the fusion 
data, Eqs. (20) and (31) are valid only as first-order 
approximations; a more refined analysis should take 
the variation of q into account. 

IV. CONCLUSION 

The successful comparison of theory with experiment 
for the alkali metals permits one to assess tentatively 
the significance of the Simon equation for elements of 
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relatively high melting point. For elements of low 
melting point, such as the molecular crystals, applicabil­
ity of the ::\Iurnaghan equation of state has not been 
verified; hence the conclusions are not necessarily 
valid for elements of this class, for which the Simon 
equation was originally devised. 

The fundamental fusion criterion on this theory is 
Eq. (7) corresponding to the Lindemann law, from 
which the Simon equation follows through choice of 
the Murnaghan equation (or one of similar analytic 
form) as the equation of state of the solid. However, a 
treatment analogous to that given here, based on a 
Dirch equationl9 (also derived from the theory of finite 
strain) or other justifiable equation of state, will not 
necessarily yield the analytic form of Eq. (31), but 
should be capable of representing the experimental 
facts as well, if Eq. (7) is accepted. Further, the 
evaluation (21) of the Simon exponent implies some 
dependence on the pressure range covered by the fusion 

Ii F. Birch, Phys. Rev. 71, 809 (1947). 

curve, and the evaluation of the Simon coefficient shows 
a dependence on the arbitrary position of the origin 
of the fusion curve. These considerations suggest that 
the Simon equation has more the character of an 
interpolation formula than a basic fusion equation, at 
least for the elements of higher melting temperature. 

The fact that the Simon equation can be derived so 
directly from the generalized Lindemann law of I, for 
low pressure, justifies to some extent the step of 
extrapolating the law, for high pressure, to obtain the 
fusion curve on the basis of the Thomas-Fermi equation 
of state.20 
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Griineisen Parameter for a Solid under Finite Strain* 

J. J. GILVARRY 
The Rand Corporation, Santa Monica, CaJijomia 

(Received November 10, 1955) 

An evaluation of the Griinesisen parameter (or constant) from the equation of state of a solid has been 
obtained by Druyvesteyn and Meyering on the basis of the theory of finite strain. The result differs (by - 1) 
from the corresponding evaluation on the Debye theory, as given by Lorentz and by Slater. The value of 
Druyvesteyn and Meyering is derived here without use of the formal theory of finite strain, and shown to 
correspond physically to a model of independent pairs of nearest neighbor atoms, rather than to the Debye 

. model of coupled atomic vibrations. This fact resolves a paradox raised by Dugdale and MacDonald in 
connection with an ideal harmonic solid, and ascribed by them to neglect of finite strain. The presence of a 
state of finite hydrostatic pressure, upon which elastic waves or pressure changes of infinitesimal amplitude 
are impressed, is taken into account explicitly by means of Murnaghan's theory of finite strain, to:obtain 
the Griineisen parameter, as evaluated from the equation of state, on the Debye model and for a 
Druyvesteyn-Meyering solid. The results are identical in the two cases with the corresponding values 
obtained without use of the formal theory of finite strain. Hence, no basis exists for the modification at 
finite pressure in the Griineisen parameter from the Debye theory, as proposed by Dugdale and MacDonald. 
A comparison of average values over a relatively large number of elements, of Griineisen constants as 
evaluated from Griineisen's law and from the equation of state on the Debye model, shows excellent 
agreement at normal and at melting temperature. 

1. INTRODUCTION 

FROM results of Lorentz! and Slater,2,3 the Griineisen 
parameter (or constant) I'D of an isotropic solid 

can be evaluated from its equation of state as 

"/D= -1-HapjaV)-!(Va2PjaV2), (1) 

where P is the pressure corresponding to the volume 
V. As indicated by the subscript D, this result is based 

* Work sponsored by the U. S. Atomic Energy Commission. 
1 H. A. Lorentz, Proc. Roy. Acad. Amsterdam 19, 1324 (1916). 
I J. C. Slater, Phys. Rev. 57, 744 (1940) . 
'J. C. Slater, Introduction to ChemicaJ Physics (McGraw-Hill 

Book Company, Inc., New York, 1939), pp. 238,394,451. 

on the Debye theory j it presupposes that the Poisson 
ratio of the solid is constant. In a number of polpers4- 6 

concerned with the fusion curve and the beholvior of 
solids under pressure, the author has assumed tholt the 
evaluation (1) of the Gruneisen parameter is valid at 
high pressure, for the Debye theory. 

The question can be raised whether the theory of 

'J. J. Gilvarry, this issue 
referred to hereafter as I. 

6 J. J. Gilvarry, this issue 
referred to hereafter as II. 

[Phys. Rev. 102, 308 (1956)J, 

[phys. Rev. 102, 317 (1956)J, 

s J. J. Gilvarry, preceding paper [phys. Rev. 102,325 (1956)J, 
referred to hereafter as m . 
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finite strain may not modify Eq. (1) at high pressure. 
On. the b~sis of Duhem's formulation7 of the theory of 
fimte stram, Druyvesteyn and Meyering8 have obtained 
a value 'YD.lI for the Griineisen parameter of a solid as 
evaluated from the equation of state, which can be 
e;,.-pressed as 

(2) 

in terms of 'YD of Eq. (1). The presumption in their 
work is that the conflict of Eq. (2) with Eq. (1) arises 
from consideration of finite strain. Further, Druyves­
teyn9 has used Murhaghan's theorylo.ll of finite strain 
with some drastic assumptions, to evaluate the Griinei~ 
sen parameter of a solid in terms of its Poisson ratio 
alone. In later work,J2 however, he pointed out that 
values of the Grlineisen constant obtained from 
Griineisen's law show only poorly the predicted 
correlation with Poisson ratio; hence, this resul L of 
Druyvcstcyn will not be considered further in what 
follows. 

Of late, this question of the possible effect of finite 
strain has been reopened by Dugdale and MacDonald.13 

These authors point out that Eq. (1) yields a value 
'YD=t when applied to the equation of state of a solid 
v:rhich they believe should show no thermal expansion; 
smce 'YD does not vanish, Griineisen's law implies a 
thermal expansion. Dugdale and MacDonald ascribe 
the paradox to neglect of finite strain in the derivation 
of Eq. (1). They attempt to resolve the paradox by 
postulating (apparently without formal derivation from 
the theory of finite strain) an expression for the Griinei­
sen 'parameter as evaluated from the equation of state 
which coincides with Eq. (2) of Druyvesteyn and 
M~~er.ing at zero pressure, and th,us yields a vanishing 
Grunelsen parameter for the case m question. 

The infinitesimal theory of elasticity describes an 
iso:ropic solid by means of two elastic parameters, 
which can be taken as the two Lame constants or as the 
bulk modulus and the Poisson ratio. These coefficients 
yield directly the values of such derivatives as ap /iJV 
or iJ2E/iJV2 , where E is the total energy. To evaluate 
the corresponding higher derivatives, the formal theory 
of finite strain introduces three additional coefficients 
for an isotropic solid, which can be taken as the three 
Brillouinl 4.l6 or the three Mumaghan1o.ll parameters. 
These parameters yield directly the values of such 
deriv~tives as a2p/iJV2 or a3E/aVa. Since Eq. (1) 
contams a2p/iJP, though not ex-pressed in terms of 

7 P. Duhem, Ann. Ecole Norm. 23, 169 (1906). 
8 M. J. Druyvesteyn and J. L. Meyering, Physica 8,851 (1941). 
• M. J. Druyvesteyn, Physica 8, 862 (1941). 
10 F. D. Murnaghan, Am. J. Math. 59, 235 (1937). 
II F. D. ~urnaghan, in Applied Mechanics, Theodore V01I 

Kd.mld.n AtI1l~versary Vol1llne (California Institute of Technology 
Pasadena, 1941), p. 121. ' 

12 M. J. Druyvesteyn, Philips Research Rept. 1, 77 (1946). 
13 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 89 832 

(1953). ' 
14 L. Brillouin, Ann. phys. 3, 267, 328 (1925). 
15 L. Brillouin, L as Tenseurs 1m M tca1lique el en EJasticite 

(Masson et Cie., Paris, 1949), Chaps. 10-12. 

Brillouin or Murnaghan pa rameters, it involves 
consideration of finite strain. J.~..:nce, Eq. (1) for the 
Gruneisen parameter on the Debye model should 
contain no restriction to infinitesimal strain (a point 
which has also been made by SlaterI6). 

In this paper, Eq. (2) for 'YDM will be derived without 
reco.urse to the formal mechanics of the theory of finite 
stram. The derivation brings out clearly the area of 
physical validity of the result; it applies to a model of 
mdependent pairs of nearest neighbor atoms. Druyvcs­
teyn and Meyering obtained the expression by virtue 
o:lly of tacit limitation to such a solid. Hence, the 
dlfrerence between Eqs. (1) and (2) lies in the model 
employed. The former equation corresponds to a 
Debye solid, in which coupling of the vibrations of the 
individu:tl atoms is taken into account. These considera­
tions yield an immedi:tte resolution of the p:tradox of 
Dugdale :tnd 1\IacDol1:l.ld. 

1\1 urn:tghan has reduced the theory of flllite strain 
to a form very tractable for physical applicationsY 
The consistency of his results with the very extensive 
earlier work has been shown by Truesdell. ls The 
formalism of the Murnaghan theory will be used in 
this paper to derive the value of the Griineisen 
parameter under tinite strain, as evaluated from the 
equation of state for a Debye solid, on the basis of an 
assumption corresponding to that of constant Poisson 
ratio. The result is identical with that of Eq. (1), as 
one should expect on the usual assumption that the 
presence of a uniform finite pressure affects the velocities 
?f elastic waves of infinitesimal amplitude only through 
ltS effect upon the density and the elastic parameters. 
Ir: p~int of. fact,. this ~ssumption has been justified by 
BlOt on hiS formulatlOn of the theory of finite strain, 
by a general argument. The value of Eq. (2) is found 
for the Griineisen parameter of a Druyvesteyn-Meyer­
ing solid under finite strain. 

II. HARMONIC SOLIDS 

A harmonic solid is one in which the thermal behavior 
can be represented by a set of lattice oscillators whose 
Hamiltonian His 

H=tL.(p?+47r2vlql), (3) 

where the range of i corresponds to all normal modes of 
?scillation, p,,ts the generalized momentum correspond­
mg to the OSCIllator coordinate q" and lI, is an oscillator 
frequency. The Griineisen parameter "I of the solid is 
defined by 

"1= -a lnll/a lnV, (4) 

on the Griineisen postulate that all lattice frequencies 

1G J. C. Slater (private communication). 
17 F. D. Murnaghan, Fillitc Dcformation of an Elastic Solid 

(John Wiley and Sons, Inc., New York, 1951), Chap. 4. 
18 C. Truesdell, J. Rational Mech. and Anal. 1, 173 (1952). 
Ie M. A. Biot, J. Appl. Phys. 11, 522 (1940). I 
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Vi vary with volume in the same manner.20 The thermal 
pressure PI of the lattice is given by 

(5) 

where the thermal energy EI of the lattice is defined by 

E 1= (Li~,pl)A'+ (Li27r2vlq,2)A', ' (6) 

in which the averages of the kinetic and potential 
energies which appear must be computed from quantum 
statistical mechanics. The volumetric coefficient a of 
thermal expansion for a harmonic solid can be found 
from Gruneisen's law 

Ka='YCv/V, (7) 

ill which K is the bulk modulus (inverse compressibility) 
and Cv is the heat capacity at constant volume. This 
result follows directly from Eq. (5), on the Griineisen 
assumption that 'Y is a function only of volume. 

The thermal oscillators, whose coordinates appear 
in Eq. (3) for H, may be the virtual oscillators of the 
acoustic field as in a Debye solid (which shows a 
spectrum of frequencies), or they may be material 
oscillators, as in the Druyvesteyn-Meyering solid 
(where only one frequency appears) discussed below. 
Such harmonic solids stand in contrast to the an­
harmonic solids treated by Born and Brody,21 or by 
Hooton.22 

A. Debye Solid 

For purposes of later reference, a prefatory discussion 
of a Debye solid will be given. 

The Debye frequency liD of an isotropic monatomic 
solid is defined by 

3N= (4/3)7rV (CI-3+2Ct-3) VD3, (8) 

where N is Avogadro's number, V is the atomic volume, 
and CI and Ct are the velocities of longitudinal and 
transverse elastic waves, respectively; this definition 
corresponds to the Debye assumption of an average 
wave velocity for the two types of waves. The wave 
velocities are given for an isotropic solid by 

(9) 

if p is the density and A and J.L are the Lame parameters. 
The definition of the bulk modulus by 

K=-vap/av (10) 
yields the result 

(11) 

on the infinitesimal theory of elasticity. Use of this 
relation and the definition, 

(12) 

20 E. Griineisen, in Handbllclz der Physik (Verlag Julius Springer. 
Berlin, 1926), pp. 1-59. 

2\ M. Born and E. Brody, Z. Physik 6, 132 (1921). 
%2 D. J. Hooton, Phil. Mag. 46,422,433 (1955) . 

of Poisson's ratio cr permits one to write Eq. (8), in 
the form of I and II, as 

(13) 

where},lf is the atomic weight and SD(cr) is defined by 

[ 
3 Ji[ 9/47r Jl 

s/)= 2(1+cr) [2(1-cr)J-!+2[1-2crJ- l ' (14) 

Thermodynamic functions on the Debye model, such 
as the thermal energy El of Eq. (6), are given directly 
by standard results23 in terms of ItIlD/kT, where It 
and k are the Planck and Boltzmann constants respec­
tively, and T is the absolute temperature . 

To satisfy Gruneisen's postulate,20 that all the 
frequencies vary with volume in the same manner, it is 
essential that the Poisson ratio cr be constant; otherwise 
the frequencies of the longitudinal and transverse 
waves show different variations.3 With this assumption, 
use of Eq. (13) in Eq. (4) yields 

'YD= -t-ta InK/a InV (15) 

for the Griineisen parameter 'YD on the Debye model. 
This form for 'YD is essentially that of Lorentz; by Eg . 
(10), it is equivalent to Eq. (1) of Slater, which, one 
notes, does not contain explicitly the Lame parameters 
A and J.L characteristic of the infinitesimal theory of 
elasticity. 

It is common in the theory of elasticity of solids to 
consider only adiabatic and isothermal processes, in 
which cases a strain-energy function can be defmed24 ; 

thus, the distinction between the energy and the 
Helmholtz free energy will be ignored, in general. 
It is known that the bulk modulus for a solid can be 
taken indifferently as adiabatic or isothermal at low 
pressure,26 and the result for a solid at high pressure 
follows from the Thomas-Fermi atomic model, for 
temperatures low in the sense of the model.26 Hence, 
qualification of a partial derivative with respect to 
volume as adiabatic or isothermal will be omitted, on 
the basis above, and on the basis of Griineisen's 
assumption that the characteristic frequency is a 
function only of volume. 

B. Druyvesteyn-Meyering Solid 

In this section, the Griineisen parameter given by 
Druyvesteyn and Meyering will be obtained from an 
atomistic model. Consider a monatomic solid with a 
simple cubic lattice. Assume that each atom shares a 
bond with each of its six nearest neighbors, and with 
no neighbors more remote. Let each bond be represented 

23 J. E. Mayer and M. G. Mayer, Statistical J{echatlics (John 
Wiley and Sons, Inc., New York, 1940), pp. 243, 251. 

24 A. E. H. Love, A Treatise 01> the },IIathematical Theory of 
Elasticity (Dover Publications, New York, 1944), fourth edition, 
pp. 94, 99, 104. 

2. H. Jeffreys, Proc. Cambridge Phil. Soc. 26, 101 (1930). 
16 J. J. Gilvarry, Phys. Rev. 96, 934 (1954). 
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by an n,dllator consisting of the two atoms connected 
by a r.u ... inear spring along their join, and assume that 
each such oscillator is independent. The Grilneisen 
parameter for such a solid of independent pairs of 
nearest-neighbor atoms will be obtained by extension of 
a method given by Madelung27 and Einstein28 to 
evaluate the characteristic frequency of a solid in terms 
of its elastic parameters. The model in question is 
efJuivalent to one in which each bond is replaced by a 
diatomic molecule. It is clearly artificial, but not 
entirely so; Slater3 has pointed out the similarity 
between the metallic bond and the homopolar bond, 
and has used the Morse potential for the interatomic 
potential in a metal to obtain values of the Grilneisen 
constant showing reasonable agreement with values 
from Grilneisen's law. 

The volume variation of the frequency II of a single 
bond oscillator is given to first order, from Eq. (4), by 

11= IIDM[I-'YDAf(V - Vo)/Vo], (16) 

where 'YDM is the corresponding Grilneisen parameter, 
IIDM is a constant frequency, and Vo is the normal value 
of the volume V. Since the volume per atom for a 
simple cubic lattice is ,a in terms of the interatomic 
distance r, one obtains 

11= IIDM[I-3'YDM(r - ro)/ro], (17) 

if ro is the normal value of r; note that the nonlinear 
spring forming a bond is such that increase of its length 
r lowers its force constant. The independent osci llation 
corresponding to a bond takes place with the center of 
mass of the two atoms fixed. Using reduced coordinates, 
one can express the total potential energy 1+ of this 
oscillator of variable frequency (and force constant) as 

:'= 1T2mIlDM2(r-ro)2[1- 2'YDM(r-rO)/ro], (18) 

if m is the mass of an atom. 
The change E- Eo in the total energy of a solid on 

compression can be expressed as a Taylor series through 
third-order terms in the volume change as 

1 Ko 
E-Eo=- - (V - VO)2 

2 Vo 

{
I [(a InK) ] V - VO} x 1+- -- -1 -- , 
3 a In V 0 Vo 

(19) 

by means of Eq. (10), if Eo, /(0, and the partial deriva­
tive represent values corresponding to the normal 
volume Yo. For the model of a solid in question, the 
work of compression can be viewed . as expended 
against the potential energy of the independent bond 
oscillators. For N atoms in volume V, one obtains 

E-Eo=3Nu, (20) 

27 E. Madelung, Physik. Z. 11, 898 (1910) . 
28 A. Einstein, Ann. Physik 34, 170,590 (1911). 

if u is the energy of a single oscillator (since a unit cell 
of a simple cubic lattice corresponds to one atom and 
has twelve edges, each of which is common to four 
unit cells). Taylor expansion of V = Nr3 yields 

3 {[ (a InK) ]r-ro} 1,=-Ko'/)0'(r-ro)2 1+ 1+ -- --
2 a In V 0 ro 

(21) 

from Eqs. (19) and (20), if '/)0 is the normal volume per 
atom corresponding to the normal value ro of r. 

Comparison of the leading tem1S of Eqs. (18) and 
(21) for l' yields the form 

(22) 

with SDA{= 31/2/21/21T, for the characteristic frequency of 
a solid of independent pairs of nearest neighbor 
a toms. In his evaluation of the characteristic frequency 
of a solid from elastic parameters, Einstein obtained 
the somewhat . different value (1T/6) 113 (3 1/2/21/21T) for 
the coefficient corresponding to SDM, by taking into 
account the presence of 26 neighbors of each atom in a 
simple cubic lattice. If N is Avogadro's number and 
Vo the normal atomic volume, Eq. (22) yields 

IIDM= SDMNl/3M-l/2Kol/2VOI/6, (23) 

which corresponds to Eq. (13) for the ' Debye fre­
quency.20 

A corresponding comparison of the second terms of 
Eqs. (18) and (21) for l' yields 

'YDU= -~[1+ (a InK/a InV)o] (24) 

for the Grilneisen parameter of a solid of independent 
pairs of nearest-neighbor atoms. This expression 
differs from 'YD of Eq. (15) by -}; it is identical with 
the result of Druyvesteyn and Meyering, and agrees 
with the result of Dugdale and MacDonald for zero 
pressure. Note that no use of the formal theory of 
finite strain has been made in the derivation. 

On the assumption of independent bond oscillations, 
the thermal expansion of the lattice can be determined 
directly in the classical limit by means of the expression 

(r-rO)Av= [i:e-U'kTdX rlf~xe-U'kTdX, (25) 

where x=r-ro. From Eq. (18) or Eq. (21), one obtains 
Griineisen's law in the form 

(26) 

as a check on the results. Equation (25) yields a non­
vanishing thermal expansion from u of Eq. (18) or 
Eq. (21) only because of existence of the anharmonic 
terms, corresponding to which one obtains the ex-

29 If the value of SD,l/ noted above is equated to SD oi Eq. (14), 
one obtains 0'=0.36 as the equivalent Poisson ratio, "'hich may 
be compared with the average value! over the metals [C. Zwikker, 
Physical Properties of Solid M a/trials (Interscience Publishers, 
Inc., New York, 1954), p. 90]. 
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pressLOn 
(27) 

obtained by Druyvesteyn and Meyering from prior 
\l'ork of Ornstein and Zernike.30 

for a solid wi th a simple cubic lattice, in which the 
potential energy U of an atom in the interatomic 
force field is given, in terms of the interatomic distance 

" by 
u = - A/r"'+ B/rn , (28) 

where m and n are constants, and A and B are lattice 
, sums which are computed for pairwise interaction of 

the atom with all others (considered fixed), and which 
are constant for deformation without distortion, 
GrUneisen20 determined the characteristic frequency 
directly to obtai~ the expression 

(m+n+3)/6='YDM (29) 

fo r the Gruneisen constant at normal volume. The 
equation of state corresponding to the potential 
energy (28) can be evaluated as 

1'=3A'o(n-m)- I[(Vo/V),,/3+I- (Vo/V ) "'/3+1], (30) 

where K u is t he bulk modulus corresponding to the 
normal volume lin. If the bulk modulus K is determined 
irom this equation, one verifies that Eq. (24) for 'Yn .ll 
reproduces correctly Grlineisen's value of Eq. (29) 
ior the parameter at normal volume. Slater3 has given 
the value (n+6)/6 for the Grtineisen constant at 
normal volume of a solid for which m= 1 in Eq. (28); 
the difference from the value (n+4)/6 corresponding 
to Eq. (29) of Grlineisen is due to the fact that Slater 
based his result on Eq. (15) for the Debye model. 

A solid of the type of Druyvesteyn and Meyering 
shows thermal vibrations corresponding to the single 
irequency given by Eq. (17). Hence, thermodynamic 
iunctions, such as the thermal energy EI of Eq. (6), 
can be expressed in terms of hllDM/kT by making use 
of results from Einstein's theory23 of the heat capacity 
of solids. The properties discussed above, depending on 
the cubic term in the interatomic potential energy, are 
consistent with the usual thermodynamic functions 
derived directly from the partition function Q= Ln 
Xexp[- (n+t)hIlD.\{/kT], since the energy levels of 
an anharmonic oscillator are independent of the cubic 
term wi thin flrst-order perturbation theory.3l 

Lattices more general than the simple cubic can be 
treated by following Slater's procedure,a used in his 
heuristic representation of the metallic bond by a 
diatomic molecule, of writing the volume per atom as 
cr in terms of the interatomic distance r of nearest­
neighbor atoms, where the constant c is characteristic 
of the lattice type. In such a case, Eq. (20) remains 

:xl 1. S. Ornstein and F. Zernike, Proc. Roy. Acad. Amsterdam 
19, 1289, 1304 (1916). 

31 L. Pauling and E. B. Wilson, ltltroduction to Quantum M echall­
ics (McGraw-Hill Book Company, Inc., New York, 1935), 
p.16O. 

valid, since each oscillator introduces a generalized 
coordinate q,=r-ro to describe the solid , which has 
3N degrees of freedom. Taylor expansion of V = .71,' cr3 

changes the constant factor in Eq. (21) for 'It, however. 
for the more general lattices in question, therciore, 
the value of SDM in Eq. (23) for liD,)! becomes 31/2CI /3j 
21/271", but Eq. (24) for 'YDM remains unchanged. For 
such lattices, Grtineisen's law in the form (26) can be 
verified by means of Eq. (25). 

The preceding results can be generalized directly to 
the case of a simple cubic lattice where the mass of an 
atom differs from the common mass of its six nearest 
neighbors, as in the structure of the alkali halides. 
If the mass ratio is significantly different from unity, 
the value of SDM approaches '-iJj27l"' . This value is quite 
close to the corresponding coefficient, as noted above, 
obtained by Einstein; in point of fact, both l\1adelung 
and Einstein had ionic crystals of the type of the 
alkali halides in mind in their treatments. For the 
degenerate case of mass ratio very different from unity, 
the Druyvesteyn-Meyering solid can be viewed as a 
solid of independent (light) atoms, where the coupling 
to the heavy atoms serves the function of providing an 
interatomic force lield for the light atoms. The Grlinei­
sen parameter 'Y DM is independent of the mass ratio. 

C. Ideal Harmonic Solid 

An ideal harmonic solid will be defined as one in 
which the oscillator frequencies lI, are strict constants. 
The constancy of the frequencies demands that the 
Grtineisen parameter vanish, from Eq. (4). It follows 
from Grtineisen's law (7) that the coefficient of thermal 
expansion vanishes, and, from Eq. (5), that the thermal 
pressure PI vanishes. The latter conclusion is in 
agreement with the .virial theorem, which one derives 
as32 

(Li~Pl)A'- (Li271'211;qi2)A,=~PIV, (31) 

for an ensemble of purely harmonic oscillators; since 
the average kinetic and average potential energies 
which enter are equal, one has P I = O. As will appear, 
the Debye and the Druyvesteyn-Meyering models 
make different predictions on the equation of state of 
an ideal harmonic solid. 

From Eq. (24) for the Grtineisen parameter of a 
Druyvesteyn-Meyering solid, the condition 'YDM=O 
yields 

K=Ko(VojV), 

P=Ko[ (Vo/V) -l ], 

(32a) 

(32b) 

for the bulk modulus and equation of state (correspond­
ing to P = 0 for V = V 0) of an ideal harmonic solid on 
this model. In this case, Eq. (18) or Eq_ (21) yields 
the potential energy u of a bond oscillator as 

U= (3/2)Kovol/3(r-ro)2+0[ (r- ro)4], (33) 
----

32 H. C. Corben and P. M. Stehle, Classical Mechanics (John 
Wiley ane! Sons, Inc., New York, 1950), p. 202. 
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where the notation O[xJ has been used for terms of 
order equal to or higher than that of x; the terms 
indicated in this manner have already been neglected in 
determining the energy levels of a bond oscillator.3' 

This potential energy contains no cubic term; that the 
corresponding thermal expansion vanishes follows 
directly from Eq. (25), within the approximation made 
in obtaining the energy levels. Through cubic terms, the 
Taylor e)..-pansion of 1t agrees within a proportionality 
factor with the potential energy U of Eq. (28) for 
m= -1 and n= - 2, if A, B, and an added constant are 
selected properly. With this choice of m and n, Griinei­
sen's value (29) for "I DM vanishes, as it should. 

For an ideal harmonic solid of Debye type, the 
condition "ID=O yields 

K=Ko(Vo/V)l/3, 

P=3Ko[(Vo/V)1IL 1J, 
(34a) 

(34b) 

from Eq. (15), if K=Ko and p=o at 1'=Vo. The 
equation for the bulk modulus follows directly from 
the condition that VD, as given by Eq. (13), be constant. 
As one notes, the results difIer from the corresponding 
ones of Eqs. (32) for a Druyvesteyn-Meyering solid. 
In contrast to the assumption of independent pairs of 
nearest-neighbor atoms, the Debye model postulates 
coupled atomic oscillations; coupling is introduced by 
means of the continuum approximation, by which the 
actual lattice vibrations are represented by elastic 
waves. Corresponding to these differences, the Grlinei­
sen parameters compu ted on the two models do not 
agree exactly, and the predicted equations of state for 
an ideal harmonic solid differ. 

The fonnal analog of Eq. (33) for an ideal harmonic 
solid of Debye type, corresponding to use of the result 
of "ID=O in Eq .. (19), is 

E-Eo 3 [ 2 r-ro] 
--=-Kovot(r-ro)2 1+--- +0[(r-ro)4J, (35) 

3N 2 3 ro 

for a simple cubic lattice. In spite of the fact that the 
equation contains a cubic term, one cannot use this 
result for 1t in Eq. (25) to conclude that an ideal 
harmonic solid of Debye type shows a nonvanishing 
thermal eA-pansion, since (E- Eo)/3N cannot be 
interpreted as the potential energy of an independent 
pair of nearest neighbor atoms or of an independent 
atom (for one-dimensional motion) in an interatomic 
force field, and the validity of Eq. (25) is restricted to 
such a case. It goes without saying that the difference 
r-ro appearing in Eq. (35) cannot be identified as the 
displacement which enters the expression for the 
potential energy of a thermal oscillator on the Debey 
model, since it is the normal coordinates q, of the 
acoustic oscillators which enter the potential energy in 
the Hamiltonian H of Eq. (3). The effect of thermal 
expansion is to change the normal coordinates q, to 
new values q/, where both show mean value zero, and 

to change the frequencies Vi to new values v/ given by 

(36) 

which minimize the Helmholtz free energy, as Peierlsll 

shows. Thus, Eg . (35) represents a purely fonnal ' 
expansion for a Debye solid. 

Dugdale and MacDonald'3 consider a solid in which 
the potential energy ep per nearest-neighbor pair of 
atoms is such that epee (R- RO)2 in terms of the difference 
of the distance R between the pair from its normal 
value Ro. At zero temperature, the total internal energy 
in this case is proportional34 to (VI/3- VOI/3)2. Dugdale 
and MacDonald identify such a solid as an "ideal 
harmonic body" (this definition does not coincide 
with the definition of an ideal harmonic solid used in I 

this paper). These authors note that computation of 
the pressure at T = 0 from this total energy yields 
"Iv=* from Eq. (15) at zero pressure; since they assume 
that the body in question has no thermal eA-pansion, 
they view this nonvanishing Gruneisen parameter as 
a paradox. However, even though the restoring force 
along a bond is strictly proportional to bond extension, 
resolution of the restoring forces of the bonds on the 
crystal axes introduces terms containing trigonometric 
factors in the corresponding components of the restoring ~ 
force on an atom, in general, since the atoms are 
coupled. This effect introduces anharmonicity in the 
vibration of an atom in the two- or three-dimensional 
case, and thus a thermal eA-pansion, as correctly 
predicted by the Debye theory. To suppress this I 

behavior, one must imagine the nearest neighbor pairs 
of atoms as independent, in which case the body is a 
Druyvesteyn-Meyering solid with an internal energy '> 
proportional to 1t of Eq. (33), and E<1. (2-1) for "InJI 
correctly yields "IV;\(= 0 at zero pressure. Nole that the 
eiTect in question does not exist for the linear chain, 
where the restoring forces of all bonds are in the same 
straight line; in agreement with the discussion of 
Dugdale and MacDonald, one verifies independently I 

p 
that "IDM and "Iv are identical in this case. 3• 

It is clear, accordingly, that the paradox of Dugdale 
and MacDonald arises only by imputing to a Debye I 

solid properties which belong to a Druyvesteyn­
Meyering solid. 

III. CASE OF FINITE STRAIN 

In the following, the presence of a state of finite 
hydrostatic pressure, upon which elastic waves or 

3J R. E. Peierls, Quatltum Theory of Solids (Oxford University 
Press, London, 1955), p. 31. 

34 Strictly, the validity of this eJ..--pression for the energy is 
incompatible with a simple cubic lattice for nearest-neighbor 
interactions only, since no rigidity exists in this casei in such a 
lattice, this expression is changed by distortion of a cubic cell 
into a rhomboid, but the energy is unatTected since no bonds 
change in length. Hence, foi a cubic lattice, the result applies 
without qualification only in the body- or face-centered case. 

as The author is indebted to Dr. W. G. McMillan in connection 
with the argument of this paragraph. 
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t 
I 

I 

pressure changes of infini tesimal am plitude are i. 1yCS­

sed , wili be ta 'en in to account explicitly by means or 
the form:ll theory of finite strain, to justify Eq. (1) 
ior a Debye so lid and Eq. (2) for a Druyvesteyn­
Jleyering solid. Thus, any restriction in the preceding 
discussion to the case of infinitesimal strain will be 
lifted. 

A. Debye Solid 

For 'in ite deiormation, under hydrostatic pressure 
alone, 0 ' •• n isotropic elastic solid about the arbitrary 
point (V1,P1) on its pressure-volume curve, Murnaghan 
has shown17 that the change P-P1 in pressure of the 
silid from the point (VI,P I ) to the point (V,P) is given 
by Taylor series through second-order tem1S in a 
parameter e as 

}'- 1>1= (3A+2/l+PI)e 
-H18l+2It-6A-4/l-3PI)e2

, (37 ) 

where A and /l arc Lame parameters evaluated at the 
point ( " ,PI), and land 1t are 1.1urnaghan parameters 
corresponding to the same point. T he variable e is 
connected with the volumes by the exact relation 

(38) 
which yields 

by a power-series expansion. 
From the definition (10) of the bulk modulus K, 

Eq. (37) yields 
K = K I -3 (VaK/aV)le, (40) 

I where 
(41a) 

(41 b) (V aK/ aV) 1= 2l+ (2/9)n- (1/9)P I. I 
I 
~ One notes that inclusion of the second-order term in 

Eq. (37) for P makes the graph of P- PI against the 
dilatation (V - V I)/V I a parabola, instead of the straight 
line corresponding to the first-order term in e. The 
presence of the finite pressure introduces the ~orrection 
term PI to 3X+2/oL in the first term of Eq. (37) for 
P-P I , which, by Eq. (41a), changes the physical 

• interpretation of the Lame parameters in terms of the 
bulk modulus a finite pressure, as compared to the 
interpretation of Eq . (11) for infinitesimal pressure. It 
must be emphasized that the Lame parameters A 
and /oL, and the ::\Iurnaghan parameters land n, are 
functions of PI, in general. 

By a fundamental theorem of Murnaghan,17 an 
clastic body which is initially isotropic remains so 
when subjected to a finite strain due to hydrostatic 
pressure alone; t 'le initial state (VI,PI) above must be 
produced in t \ ;., manner. If a general infinitesimal 
stress is s perposed in this situation, the body remains 

ap:, )ximately isotropic. Hughef> ar.c .. ~~.iy:' have 
eXh .. -roC'd a prior result of M urnaghan17 tc ~ho\'l .;lat 

the ;',--"lonse of the solid to the superr,osed l:li'in:tehlma 
stre:;::; in this case is completely specified b~, two 
gen.:r,..l izcd Lame parameters L and lvi, il: a :.~ •. nner 
enti ,eiy analogous to the specificafon by A an /oL in 
the infmitesimal case. The values or L and U are given 
by 

L=A+PI - (6l - 2m+n-2A-2/oL-PJ e, IQa) 

lvf =).L-P1- (3m-}n+3A+3/oL, Pl )'; , "rLb) 

in \\;, 'ch m, like land n, is a 1Iurn:..ghr.n parc..n .eu;r 
evaluated at (VI,P I ) . 

T le speeds CL and Ct of longitudina l and tra S'vc ":;': 

waves, respectivciy, of infmitesimal ampElu.de :;:.. )(;r­
posed on a state of finite strain due to hydro";,d t' c 
pressure, are given by equations analogous 0 E q:; . (9) 
in the infinitesimal case, as 0 

where P is the densit.y corresponding to the volu.n(; V. 
Hugh.!:; and Kelly give expressions for Land M whicL 
omit terms in PI, since these authors refe:rec the oody 
to an initial state of zero pressure, for e>..-perirr.cmal 
purposes. If use is made of the relation p=po (1,3e) 
obtained from Eq. (39), for P in terms of an initial 
density Po, Eqs. (43) reduce to the corresponding 
expressions of Hughes and Kelly for P I= O, and agree 
with the corresponding relat ions of Brillouin. 

With J( given by Eq . (40), the values of L ane . { 
satisfy the relation 

K=L+~lvf, (-1 .. 0 
analogous to Eq. (11) in the infinitesinlal case. T he 
expression (12) for the Poisson ratio in the infinitesimal 
case must be replaced for finite strain by a generalized 
Poisson ratio ~ defined by 

'1:.=tL/(L+lvf). (45) 

The stability conditions24 K, lvf '2. 0 require tha t 
'1:. ~t, and one obtains '1:.~<T in the limit PI, P-)oO. 
With introduction of ~, the response of the solid under 
finite strain to a superposed infinitesimal stress of 
general type can be described completely by the two 
parameters K and '1:., instead of Land lvf. 

Use of Eqs. (44) and (-15) in the analog 0 Eq. (8) 
obtained by replacing cland Ct by Cland C t , respectively, 
yields 

jJ D = SNI/J lvf-l/2]{1 /2 VI /6 (-t6) 

for the Debye frequency liD, where S=SD ('2:- ) in terms 
of SD of Eq. (14). Corresponding to the case of Sec. 
IIA, it is necessary that '1:. be constant to sa tisfy the 
Griineisen postulate that the frequencies of the longi­
tudinal and transverse waves show the same vo ume 
.variation. Under this assumption, the defini tion (4) 

16 D. S. Hughes and J. L. Kelly, Phys. Rev. 92, 1145 (1953). 
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FIG. 1. The generalized Poisson ratio l: as a function of pressure for 
polystyrene and for Pyrex glass, from data of Hughes and Kelly. 

yields Eq. (15) for the Griineisen parameter on the 
Debye theory, which is the result obtained without 
use of the formal theory of finite strain. By application 
of Eq. (15) at the point (VI,PI), with use of Eqs. (41), 
the expression for 'YD becomes 

"(D= - iD+ (18l+2n-P1)/(3A+2j.L+P1)], (47) 

in terms of Lame and Murnaghan parameters. 
For an ideal harmonic solid of Debye type, the 

requirement that 'YD of Eq. (15) vanish yield~ 

P=Pl+3KI[(VI/V)I/LI] (48) 

as the corresponding equation of state, if the constant 
of integration is evaluated at the point (VI,P1). One 
recovers Eq. (34b) if use is made of Eqs. (34) to relate 
Kl and PI to the bulk modulus Ko at the normal volume 
Vo j thus the equation of state shows a transitivity 
property. Use of the same relations for KI and PI in 
Eq. (41a) yields 

. (49) 

so that the combination of Lame parameters on the 
left is a constant. From Eq. (41b), one obtains 

6l+~n=-Ko, (50) 

in which the combination of Murnaghan parameters is 
constant. The last equation imposes no restriction on 
the second-order coefficient 1nj this parameter must be 
chosen as a function of volume so that 2: of Eq. (45) 
has thc value (J', which must bc takcn as a constant, so 
that the GrLincisen postulate is satisfied for thc frc­
quencics. Accordingly, thc Lame paramcters A and J..I 

have constant values scparatcly for an idcal harmonic 
solid of Dcbye type. 

The fact that the Lame parameters are constant for 
an ideal Debye solid means that the equation of state 
is identical with that obtained by Murnaghanl7 on 

the linear theory of finite strain. The equation of state 
given by Murnaghan, corresponding to the "integrated 
linear theory of finite strain," which was used in III 
to derive the Simon equation for the fusion curve 
reduces to Eq. (34b) if the Griinesiscll parametcr of th~ 
solid on the fusion curve vanishes. One notes that the ' 
sign of the combination of Murnaghan parametcrs ill 
Eq. (50) is negative, which is agreemcnt witl the 
general results of measurements of thcse paramcters 
made by Hughcs and Kclly on various solids. The 
signs of the second-ordcr coelTlcients were predicted by 
Brillouin to be negative in general, as is necessary if the 
wave velocities increase with pressure. 

As a check on the assumption of constant 2:, values 
of this parameter from ell.-perimental results of Hughes 
and Kelly for polystyrene and for Pyrex glass are 
shown in Fig. 1, as a function of pressure. Comparison 
of Fig. 1 with Fig. 1 of I and Fig. 1 of II shows that the 
assumption is fulfilled reasonably as compared to the 
corresponding assumption on (J'. 

B. Druyvesteyn-Meyering Solid 

For the change E- El in total energy of a solid from 
the point (VI,P1) to the point (V,P) under a change in I 

hydrostatic pressure, Murnaghan has given the ' 
expression 17 

E-EJ = V1[3P l e+ (3/2) (3A+2j.L)eL (9l+n)e3J, (51) 

which, as one verifies, yields Eq. (37) for P-PI, with 
use of Eq. (38). By means of the expansion (39), 
one obtains 

E-El= -P1(V- V1)+i(3A+2J..1+PI) ~ 
X (V - VI)2jV1+ (1/54) (18l+2u-9A 

-6J..1-4P1)(V - V1)3jVI2• (52) 

The first term in this expression is an energy of compres­
sion whose presence ensures that - (aE/aV)I=Pl, 
corresponding to the fact that the total energy of the 
solid cannot possess a minimum at (V1,P1) unless ) 
PI=O. For a Druyvesteyn-Meyering solid of N atoms 
in volume V, the remaining energy of compression can 
be represented as the potential energy of 3N independ­
ent bond oscillators of potential energy u by 

(53) . 

which replaces Eq. (20) in thc infinitesimal case. In 
contrast to E, 1t is such that (a1t/aV) 1 =0, corrcsponding 
to the fact that the potential energy of an oscillator 
must possess a minimum at (V I ,P1). 

The defll1ition (4) of the Griinciscn paramcter yil!lds 

for the frequency /I of a bond oscillator, if /'1 is Lhc 
value of the interatomic distance r corresponding to 
the point (V1,P1); this expression replaces Eq. (17) in 
the infinitesimal case. The corresponding potential I 
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energy 11 of the oscillator becomes 

1l=~llljlDM2 (r-r1)2[1-2'YDM(r-r1)/r1]' (55) ' 

analogous to Eq. (18) . By means of Eqs. (52) and (53). 
an al ternative expansion of 1l in powers of r-r1 can 
be obtained. Comparison of the result with u as defined 
by Eq. (55) yields 

jlDM=SDMN1/3M-1/2K11/2V11/6 (56) 

as the characteristic frequency, if note is taken of 
Eq. (41a), and yields 

"IDM= -!-t(18l+2n-PJ)/(3>.+2J.L+P1) (57) 

directly as the corresponding Griineisen parameter in 
terms of Lame and Murnaghan parameters. One 
obtains 

"IDM=-~[1+(alnK/alnV)lJ (58) 

from Eqs. (41); this result corresponds exactly with 
Eq. (24) obtained for zero pressure. By direct use of 
Eq. (25) to calculate (r-rl)A" one can verify Griinei­
sen's law under finite strain. The analog of Eq. (27) 
becomes 

(59) 

which, with reference to Eq. (57), brings out a point 
emphasized by Druyvesteyn and Meyering, that the 
anharmonic term in the potential energy of an atom in 
the interatomic force field is a function of the second­
order elastic coefficients. 

For an ideal harmonic solid of Druyvesteyn-Meyering 
lype, integration of the relation 'Y mI= 0 for an arbi­
trary point and evaluation of the constant of integration 
at the point (V1,P1) yields 

P= P1+ K l[ (V1/V) -1J, (60) 

as the equation of state. This expression reduces to 
Eq. (32b) by use of Eqs. (32) to evaluate Kl and P 1 ; 

thus the equation of state shows a transitivity property 
(as noted for the corresponding Debye solid). Note 
that 1.+ (2/3)J.L must be such a function of pressure that 
Eqs. (32a) and (41a) are satisfied simultaneously. 
For l' in the case of this ideal solid, one obtains an 
expression corresponding exactly to Eq. (33), from 
which direct use of Eq. (25) to compute (r-rl)A, yields 
a vanishing thermal expansion. 

IV. COMPARISON WITH EXPERIMENTAL DATA 

It is clear from the foregoing that the two evaluations, 
'YD and "IMD, for the Griineisen parameter as evaluated 
from the equation of state, correspond to two different 
models. That both models represent approximations 
follows from the more refined analysis of Barron,37 
and from considerations noted by Slater and Zener8 

in .connection with the Debye model. However, from 

37 T. H. K. Barron, Phil Mag. 46, 720 (1955) . 
as C. Zener, Elasticity and Anelasticity of Metals (University of 

Chicago Press, Chicago, 1948), p. 30. 

TAnLE I. Comparison of average Griineisen constants from 
equation of state and from Griineisen's law. 

'Y 
(Gr(j ncise n 

'YD 'YDAr "(",,0 ~/ "..D.\{ law) 

Average of 
19 elements 1.9,- 1.50' 1.96b 

Average of 
14 elements 1.8' 1.5· 1.8' 

• Vallles for 10 elements (Mn. Fe. Co. 1\.i. Cu. Pd. Ag. W . Pt. and Pb) 
from Slater (reference 3); values for 9 clements (Li Na K Rb Cs Al Au 
Mo. and T a) from Gilvarry (reference 39) . .•. .••• 

b Values from Grilneisen (reference 20). revised in the cases of the al kal i 
meta~s and of AI. Au. Mo. and Ta to correspond to incom pressibilities given 
by Gllvarry (reference 39) . 

, From Table V of I (values for Ga. Bi. and Sb excluded). 

th~ artificial nature of the Druyvesteyn-Meyering 
solid as compared to the Debye model, one expects 
"ID to represent a better approximation than 'YDM. 
Dugdale and MacDonald state that use of "IDA!, as 
against "ID, improves slightly the over-all agreement of 
values of the Griineisen constant from the equation 
of state and from Griineisen's law, for the elements in 
Slater's tabulation.3 However, this tabulation shows 
large deviations in the two evaluations of the constant 
for the three alkali metals ' included and for some 
rela tively incompressible metals (Au, Mo, and Ta) . 
A redetermination by the author9 of compressibility 
parameters for these elements (with inclusion of Rb 
and Cs) from more recent experimental data of Bridg­
man reduced the discrepancies in these cases, so that 
the contention of Dugdale and MacDonald could not 
be maintained. 

One should expect the inevitable experimental 
inaccuracies to cancel to a significant extent in a 
comparison of the averages for a reasonably large 
number of elements, of evaluations of the Griineisen 
constant on particular models. In Table I, average 
values for 19 elements of "ID and "IDM, as obtained from 
the equation of state for zero pressure, are compared 
with the corresponding average obtained with use of 
thermal parameters from Griineisen's law (7) ; one notes 
that agreement of 'YD with the value from Grun:eisen's 
law, shown in the last column, is excellent. An everage 
value for 14 elements is shown likewise for the Gruneisen 
constant "Im.D of the solid at fusion, given in I as 

"Im.D=t+tqKmLlV/L, (61) 

where K", is the bulk modulus of the solid at melting, 
/::,. V and L are the volume change and la tent heat of 
fusion, respectively, and q is a parameter of the order 
of unity. This equation has been derived in I on the 
basis of Eq. (15) for the Griineisen parameter and thus 
is valid on the Debye theory; the corresponding value 
"Im.DM for a Druyvesteyn-Meyering solid is "Im.D-}' 
The agreement shown by the table is exact, within 
the accuracy of the data, between "Im.D and the corre­
sponding value derived from application of Griineisen's 

~ J. J. Gilvarry, J. Chern. Phys. 23, 1925 (1955). 
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law to the solid at the melting point. These data 
suggest that the assumptions underlying the evaluation 
of the Grtineisen parameter from the equation of state 
on the Debye model are met reasonably well by 
elementary solids, on the average. 

V. CONCLUSION 

The results obtained show that formal consideration 
of finite strain leaves the evaluation of the Grtineisen 
parameter from the equation of state unaltered, for 
either a Debye solid or a Druyvesteyn-Meyering solid. 
Hence, no reason exists on the basis of the theory of 
finite strain for the arbitrary modification in the 
evaluation of the parameter for a Debye solid, as 
proposed by Dugdale and MacDonald. This statement 
presupposes that the wave amplitudes of the lattice 
vibrations are infinitesimal. It is not denied that an 
intrinsically anharmonic theory, such as that of Eorn 
and Brody21 or of Hooton,22 may demand revision of 
the value of the Grtineisen parameter as determined 
from the equation of state, but such a model likewise 
requires revision of the value of the characteristic 

frequency, as fixed by Eq. (8) on the Debye theory. 
Underlying the definition of the Grtineisen parameter I 

is the postulate that all lattice frequencies vary with 
volume in the same manner; it is not obvious, a priori, 
that this requirement can be met within the framework 
of an essentially anharmonic theory. 

The development of I, II, and III is based on the 
Debye-Waller theory derived from the Debye model, in 
contrast to the original Lindemann theory based on an 
Einstein model. Since the form of Griineisen parameter 
taken in the papers in question corresponds to the 
Debye theory, it is felt that in this respect the results 1 

have been justified fully. 
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Auger Electron Emission in the Energy Spectra of Secondary Electrons 
from Mo and W 

G. A. HARROWER* 

Bell Telephone Laboratories, Murray Hill, New Jersey 

(Received October 10, 1955) 

With the aim of determining to what extent the energy distribu­
tion of secondary electrons from targets of Mo and W may contain 
fine structure, measurements have been made using primary 
energies from 100 to 2000 electron volts. An electrostatic analyzer 
of the 127-degree type having an experimentally determined 
resolution of one percent was used. Observations of the pressure 
in the vacuum system, after heating the target above 20000 K and 
cooling to room temperature, showed that an energy spectrum 
could be recorded before formation of the first monolayer of 
contamination on the target surface. 

Energy distribution measurements revealed: (1) Several sub­
sidiary maxima at fixed difierences in energy from the primary 
energy, these differences being characteristic of the target material 
and independent of the primary energy itself. (2) Several sub-

1. INTRODUCTION 

T HE general shape of the energy distribution of 
secondary electrons from a metal target is that 

of a smooth curve whose two principal features are a 
large maximum of slow secondaries occurring near two 
or three volts and a sharper, usually smaller maximum, 
caused by elastically reflected primaries. Furthermore, 
several workers have observed some fine structure in the 

• Now at the Department of Physics, Queen's University, 
Kingston, Ontario, Canada. 

sidiary maxima in the energy distribution at fixed positions along 
the energy scale lying between 10 and 500 electron volts, charac­
teristic of the target material, and independent of the primary 
voltage. The maxima described in (1) are considered to be primary 
electrons reflected after suffering discrete losses of energy to the 
target. These discrete losses are believed to indicate the positions 
of the higher energy levels of the target ma.terial. The maxima 
described in (2) a.re interpreted as Auger electrons. Combining the. 
energy level values determined from the discrete loss measure­
ments with energy values for the deeper lying levels available 
from x-ray studies, it is possible to predict the energies with which 
Auger electrons might be ell:pected to be emitted. Some of the 
predicted energies for Auger electrons agree reasonably well with 
with the energies observed experimentally both for Mo and for W. 

energy spectrum of secondaries from a number of dif­
ferent metals. Rudberg,l studying Cu, Ag, and Au, 
reported inelastic reflection of primary electrons that 
had suffered discrete losses of energy, these losses being 
independent of the primary energy and characteristic 
of the target material. Haworth2.3 made similar observa­
tions for targets of Mo and Cb but observed further that 

IE. Rudberg, Phys. Rev. 50, 138 (1936). 
2 L. J. Haworth, Phys. Rev. 48,88 (1935). 
• L. J. Haworth, Phys. Rev. 50,216 (1936). 
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